"APOYO A LA FORMULACIÓN DEL PLAN DE SANEAMIENTO Y MANEJO DE VERTIMIENTOS (PSMV) PARA LOS MUNICIPIOS DE SOTARÁ Y TOTORÓ - CAUCA"

KELLYN JULIANA ÓRDOÑEZ ÓRDOÑEZ

CORPORACIÓN UNIVERSITARIA AUTONÓMA DEL CAUCA
FACULTAD DE CIENCIAS AMBIENTALES Y DESARROLLO SOSTENIBLE
PROGRAMA DE INGENIERÍA AMBIENTAL Y SANITARIA
POPAYÁN
2019

"APOYO A LA FORMULACIÓN DEL PLAN DE SANEAMIENTO Y MANEJO DE VERTIMIENTOS (PSMV) PARA LOS MUNICIPIOS DE SOTARÁ Y TOTORÓ CAUCA"

KELLYN JULIANA ÓRDOÑEZ ÓRDOÑEZ

Trabajo de Grado en modalidad de Pasantía para optar el título de Ingeniería

Ambiental y Sanitara

Director

Jorge Fabián Fernández

CORPORACIÓN UNIVERSITARIA AUTÓNOMA DEL CAUCA
FACULTAD DE CIENCIAS AMBIENTALES Y DESARROLLO SOSTENIBLE
PROGRAMA DE INGENIERÍA AMBIENTAL Y SANITARIA
POPAYÁN
2019

NOTA DE ACEPTACIÓN

Una vez revisado el documento final del trabajo de grado titulado ""APOYO A LA FORMULACIÓN DEL PLAN DE SANEAMIENTO Y MANEJO DE VERTIMIENTOS (PSMV) PARA LOS MUNICIPIOS DE SOTARÁ Y TOTORÓ CAUCA""; realizado por la estudiante **Kellyn Juliana Órdoñez Órdoñez**, se autoriza la sustentación de este para optar al título Profesional en Ingeniero Ambiental y Sanitario de la Corporación Universitaria Autónoma del Cauca.

Jorge Fabián Fernández Director Programa de Ingeniería Ambiental y Sanitaria

CESAR JULIAN MUÑOZ DE LA ROSA, ESPECIALISTA, INGENIERO AMBIENTAL Jurado

Corporación Universitaria Autónoma del Cauca

Programa de Ingeniería Ambiental y Sanitaria Corporación Universitaria Autónoma del Cauca

RONAL EDINSON CERON, MAGISTER, INGENIERO AMBIENTAL Jurado Programa de Ingeniería Ambiental y Sanitaria Corporación Universitaria Autónoma del Cauca

Popayán, mes día de 2019

DEDICATORIA

En primera instancia dedico este trabajo a mis padres José Rodrigo Ordóñez, Sandra Milena Ordóñez y a mi hermano Andrés Santiago, porque han fomentado en mí, el deseo de superación y triunfo en la vida, quienes con sacrificio, esfuerzo y amor incondicional hicieron posible llegar a este momento. Espero contar siempre con su valioso e incondicional apoyo.

Espero algún día retribuirles todo lo que me han brindado.

Kellyn Juliana Órdóñez Órdóñez

AGRADECIMIENTOS

Agradezco profundamente a Dios porque me dio la sabiduría y las fuerzas necesarias para superar todos los obstáculos y dificultades que se presentaron en mi carrera y en la vida.

A mis familiares, quienes de una u otra manera siempre me brindaron su apoyo.

Gracias a mis amigos, con quienes compartí conocimiento, alegrías y tristezas, fueron un pilar fundamental para poder culminar este proceso.

Kellyn Juliana Órdóñez Órdóñez

TABLA DE CONTENIDO

RESUMEN		. 17
ABSTRACT		. 19
CAPÍTULO	I. INTRODUCCIÓN	. 21
1.2. JUS 1.3. OB 1.3.1.	ANTEAMIENTO DEL PROBLEMA STIFICACIÓN JETIVOS Objetivo general Objetivos específicos	. 24 . 25 . 25
2. CAPÍTU	JLO II. REFERENTES CONCEPTUALES	. 25
	RCO TEÓRICOLa Gestión Integral del Recurso Hídrico en el marco del desarrollo 26	. 26
2.1.2.	Plan de Saneamiento y Manejo de Vertimientos	. 28
2.1.3.	Cuenca hidrográfica	. 29
2.1.4.	Contaminación del recurso hídrico	. 30
2.1.5.	Dimensiones del desarrollo y su relación con la GIRH	
	TECEDENTES	
	SES LEGALES Marco Normativo	
	JLO III. METODOLOGÍA	
4. CAPÍTU	JLO IV RESULTADOS	. 42
DE PRING PRIMARI LA FORM DE VERT TOTORÓ	SARROLLO OBJETIVO 1 • IDENTIFICACIÓN Y DOCUMENTACIÓN CIPALES FUENTES DE INFORMACIÓN O REFERENCIA, AS Y SECUNDARIAS QUE PUEDAN SERVIR PARA EL APOYO DIULACIÓN DEL ESTUDIO DEL PLAN DE SANEAMIENTO Y MANE IMIENTOS (PSMV) PARA LOS MUNICIPIOS DE SOTARÁ Y CAUCA	E JO
- 4) RFI	UNION INICIAL DE SOCIALIZACION MUNICIPIO DE SOTARA	47

4.	.3.	DIA	GNÓSTICO DE INFORMACIÓN DEL MUNICÍPIO DE SOTARÁ	42
	4.3.	1.	Localización	42
	4.3.	2.	Límites de descripción y división político administrativa	43
	4.3.	3.	Aspectos Demográficos	43
	4.3.	4.	Fuentes receptoras de aguas residuales	44
	4.3.	_	Diagnóstico general del sistema de saneamiento y manejo de	
			entos	
	4.3.	_	Diagnóstico de alcantarillado existente	
	4.3.		Sistemas de tratamientos del municipio de Sotará	
4.			JNIÓN INICIAL DE SOCIALIZACIÓN MUNICIPIO DE TOTORÓ	
4.	.5.		GNÓSTICO DE INFORMACIÓN DEL MUNICIPIO DE TOTORÓ	
	4.5.		Localización	
	4.5.	2.	Aspectos Demográficos	53
	4.5.	3.	Fuentes receptoras de aguas residuales	53
	4.5.		Diagnóstico general del sistema de saneamiento y manejo de	
			entos	
	4.5.		Diagnóstico de alcantarillado existente en Totoró	
	4.5.		Sistema de tratamiento de aguas residuales	59
			SARROLLO OBJETIVO 2: • ANALIZAR EL ESTADO ACTUAL E CAR LOS PUNTOS DE VERTIMIENTOS PARA LA TOMA DE	
			AS FISICOQUÍMICAS Y MICROBIOLÓGICAS DE LAS FUENTES	
			DRAS DE AGUAS RESIDUALES DE LOS MUNICIPIOS DE SOTAR	
			Ó CAUCA.	
			N DE MUESTREO	
4.			NTIFICACIÓN DE PUNTOS DE VERTIMIENTOS SOTARÁ	
	4.8.		Parâmetros IN SITU	
	4.8.	2.	Georreferenciación	
	4.8.	3.	Resultados de laboratorio	
	4.8.	4.	Estimación de cargas contaminantes	73
	4.8.	_	Sistema de tratamiento de aguas residuales	
4.	.9.		N DE MUESTREO	
4.	.10.	ID	DENTIFICACIÓN DE PUNTOS DE VERTIMIENTOS TOTORÓ	79
	4.10).1.	Datos IN SITU	84
	4.10	0.2.	Georreferenciación municipio de Totoró	87

4	4.10.3.	Resultados de laboratorio Municipio de Totoró	87
4	4.10.4.	Estimación de cargas contaminantes	91
2	4.10.5.	Índices de calidad	. 92
ME	ALIZACI TAS DE	JETIVO 3 APOYO EN EL ANÁLISIS, PARA PERMITIR LA ÓN DE OBJETIVOS DE CALIDAD, PROGRAMAS, PROYECTOS L PLAN DE SANEAMIENTO Y MANEJO DE VERTIMIENTOS, RA LOS MUNICIPIOS DE SOTARÁ Y TOTORÓ CAUCA	
4	4.11.1.	Objetivos de calidad y metas de reducción de cargas contaminantes	tes
4	4.11.2.	Objetivos de cálidad de la fuente receptora	95
4	4.11.3.	Metas de cargas contaminantes	. 95
4	4.11.4.	Programas y proyectos	. 97
4	4.11.4.1	Objetivo General	. 97
2	4.11.4.3	Programa de desarrollo institucional	. 98
4	4.11.4.7	PROGRAMA DE DESARROLLO DE LA INFRAESTRUCTURA	99
		JETIVOS DE CALIDAD Y METAS DE REDUCCIÓN DE CARGAS JANTES TOTORÓ	
4	4.12.1.	Objetivos de calidad de la fuente receptora	106
4	4.12.2.	Metas de cargas contaminantes	106
4	4.12.3.	Programas y proyectos	108
4	4.12.3.1	Objetivo General	108
4	4.12.3.3	Programa de desarrollo institucional	109
4	4.12.3.6	Programa de desarrollo de la infraestructura	110
5. (CAPÍTUL	O V. CONCLUSIONES Y RECOMENDACIONES	118
5.1	. CON	CLUSIONES	118
5.2	. REC	OMENDACIONES	119
BIBL	IOGRAF	ÍA	121
ANE	xos		123

LISTA DE TABLAS

Tabla 1. Marco legal34
Tabla 2 Barrios y limitaciones del municipio de Sotará
Tabla 3. Suscriptores Activos Agosto de 2018 - APC Sotará Aguas de Peñas
Blancas45
Tabla 4. Resumen chequeo de redes del sistema de alcantarillado 46
Tabla 5. Barrios de la zona urbana del Municipio de Totoró 52
Tabla 6. Usuarios activos de acueducto y alcantarillado, del municipio de Totoró 54
Tabla 7. Resumen chequeo de redes del sistema de alcantarillado 56
Tabla 8 Puntos de muestreo se dispondrán los puntos de monitoreo de la siguiente
manera62
Tabla 9 Equipo de trabajo63
Tabla 10 TABLA DE RESPONSABILIDADES63
Tabla 11 IMPLEMENTOS DE MONITOREO (LISTA DE CHEQUEO 1) 64
Tabla 12. Puntos de monitoreo municipio de Sotará65
Tabla 13. Datos in situ (Q, pH y Temp), Punto 1 Entrada PTAR Sotará 68
Tabla 14. Datos in situ (Q, Ph, conductividad y Temp), Punto 2 Vertimiento Salida
PTAR Sotará69
Tabla 15. Datos in situ (Q, Conductividad, pH y Temp), Punto 3 aguas arriba Rio
Las Piedras69
Tabla 16. Aforo Punto 3 aguas arriba Rio Las Piedras69
Tabla 17. Datos in situ (Q, conductividad, pH y Temp), Punto 4 aguas abajo Rio
Las Piedras

Tabla 18. Datos in situ (Q, conductividad, pH y Temp), Punto vertimiento 2 Barrio
Belén70
Tabla 19. Datos in situ (Q, conductividad, pH y Temp), Punto 6 aguas arriba Barrio
Belén70
Tabla 20. Georreferenciación puntos de muestreo de monitoreo de vertimientos de
la cabecera municipal de Sotará70
Tabla 21. Resultados Fisicoquímicos Entrada y Salida PTAR (Vertimiento 1).
(anexo 10)71
Tabla 22. Resultados fisicoquímicos Punto 3 y 4 Rio las Piedras aguar arriba
PTAR Sotará y Aguas abajo PTAR Sotará. (Anexo 11)72
Tabla 23. Cargas contaminantes73
Tabla 24. Eficiencias de remoción PTAR Municipal Sotará
Tabla 25. Parámetros de Laboratorio para los puntos de monitoreo de la fuente
hídrica superficial Rio Piedras74
Tabla 26. Índices de Calidad ICA IDEAM - Fuente hídrica superficial Rio Piedras
Aguas Arriba y Aguas Abajo del Vertimiento75
Tabla 27. Rango de clasificación para la determinación de calidad del agua según
IDEAM75
Tabla 8 Puntos de muestreo se dispondrán los puntos de monitoreo de la siguiente
manera76
Tabla 9 Equipo de trabajo76
Tabla 10 TABLA DE RESPONSABILIDADES77
Tabla 11 IMPLEMENTOS DE MONITOREO (LISTA DE CHEQUEO 1) 78
Tabla 32. Puntos de monitoreo municipio de Totoro

Tabla 29. Datos in situ (Q, Conductividad, pH y Temp), Punto 1 Entrada PTAR
Barrio Colombia84
Tabla 30. Datos in situ (Q, Conductividad, pH y Temp), Punto 2 Vertimiento 1
Salida PTAR Barrio Colombia85
Tabla 31. Aforo con molinete Rio Cofre antes del Vertimiento PTAR Barrio
Colombia 85
Tabla 32. Datos in situ (Q, pH y Temp), Punto 3 aguas arriba Barrio Colombia 85
Tabla 33. Datos in situ (Q, pH y Temp), Punto 4 aguas abajo Barrio Colombia 85
Tabla 34. Datos in situ (Q, Conductividad, pH y Temp), Punto 5 Entrada PTAR las
vueltas Totoró86
Tabla 35. Datos in situ (Q, Conductividad, pH y Temp), Punto 6 Vertimiento 2
Salida PTAR Las Vuelas
Tabla 36. Aforo con molinete Rio Cofre antes del Vertimiento PTAR Las Vueltas 86
Tabla 37. Datos in situ (Q, pH y Temp), Punto 7 Rio Cofre Aguas Arriba
Vertimiento PTAR Las Vueltas86
Tabla 38. Datos in situ (Q, Conductividad, pH y Temp), Punto 8 Rio Cofre Aguas
Abajo Vertimiento Las Vueltas87
Tabla 39. Georreferenciación puntos de muestreo municipio de Totoró
Tabla 40. Resultados fisicoquímicos Punto 1 entrada PTAR Barrio Colombia y
Punto 2 salida PTAR Barrio Colombia (anexo 12)
Tabla 41. Resultados fisicoquímicos Punto 3 aguas arriba PTAR Barrio Colombia,
punto 4 aguas abajo PTAR Barrio Colombia (anexo 13)89
Tabla 42. Resultados fisicoquímicos Punto 5 y Punto 6 Entrada y Salida PTAR
Las Vueltas90

Tabla 43. Cargas Contaminantes de los Vertimientos de Totoró
Tabla 44. Eficiencias de remoción PTAR de la Cabecera Municipal de Totoró 92
Tabla 45. Puntos de monitoreo para evaluación de índices de calidad del Rio Cofre
92
Tabla 46 . Parámetros de Laboratorio para los puntos de monitoreo de la fuente
hídrica superficial93
Tabla 47. Índices de Calidad ICA IDEAM - Fuente hídrica superficial Rio Cofre
Aguas Arriba y Aguas Abajo de Vertimientos
Tabla 48. Rango de clasificación para la determinación de Calidad del Agua según
IDEAM93
Tabla 49. Proyección objetivos de calidad95
Tabla 50. Meta individual de Cargas contaminantes descargadas en Rio Las
Piedras – Vertimiento1
Tabla 51. Meta individual de Cargas contaminantes descargadas a la Quebrada
Aguas Amarillas – Vertimiento 2
Tabla 52. Objetivos de calidad a Corto, Mediano y Largo Plazo Rio Las Piedras106
Tabla 53. Meta individual de Cargas contaminantes descargadas en Rio Las
Piedras – Vertimiento1
Tabla 54. Meta individual de Cargas contaminantes descargadas a la Quebrada
Aguas Amarillas – Vertimiento 2

LISTA DE IMAGENES

imagen 1 Sitios de muestro Sotará Registro fotográfico Punto 1 Entrada PTAR
Sotará66
Imagen 2. Sitios de muestro Sotará Registro fotográfico Punto 2 Vertimiento 1
Salida PTAR Sotará66
Imagen 3. Sitios de muestro Sotará Registro fotográfico Punto 3 Aguas arriba
Vertimiento PTAR Sotará67
Imagen 4. Sitios de muestro Sotará Registro fotográfico Punto 4 Aguas abajo
Vertimiento PTAR Sotará67
Imagen 5. Sitios de muestro Sotará Registro fotográfico Vertimiento 2 Barrio Belén
68
Imagen 6. Vertimientos Municipales Totoró Punto 1 Entrada PTAR Barro Colombia
80
Imagen 7. Vertimientos Municipales Totoró Punto 2 Vertimiento 1 Salida Ptar
Barrio Colombia81
Imagen 8. Vertimientos Municipales Totoró Punto 3 Río cofre Aguas Arriba
Vertimiento PTAR barrio Colombia81
Imagen 9. Vertimientos Municipales Totoró Punto 4 Río cofre Aguas abajo a 150
metros del Vertimiento PTAR B/ Colombia82
Imagen 10. Vertimientos Municipales Totoró Punto 5 Entrada PTAR Las Vueltas 82
Imagen 11. Vertimientos Municipales Totoró Punto 6 Salida PTAR Las Vueltas 83
Imagen 12. Vertimientos Municipales Totoró Punto 7 aguas arriba del vertimiento
Ptar Las Vueltas83

LISTA DE GRÁFICAS

Gráfica 1. Categorización de usuarios Acueducto APC Sotará 2018 45
Gráfica 2. Resumen de Diámetros encontrados en el Sistema de Alcantarillado
Municipal Sotará46
Gráfica 3. Resumen de Tipos de Alcantarillado encontrado en el Sistema de
Alcantarillado Municipal Sotará¡Error! Marcador no definido.
Gráfica 4. Resumen de materiales y sus longitudes Alcantarillado Sotará 47
Gráfica 5. Resumen de Tipos de Alcantarillado del sistema
Gráfica 6. Categorización de usuarios Alcantarillado APC Totoró 2018 54
Gráfica 7. Resumen de diámetros y longitudes Alcantarillado Municipal de Totoró
56
Gráfica 8. Resumen de materiales y sus longitudes Alcantarillado Totoró 57
Gráfica 9. Resumen de Tipos de Alcantarillado del sistema
Ilustración 1 Reunión inicial de socialización del proyecto del PSMV del municipio
de Sotara42
Ilustración 2 Áreas Tributarias existentes Municipio de Sotará
Ilustración 3 Cámara de alivio, Cámara de distribución de caudales
Ilustración 4 Tanque séptico50
Ilustración 5 Filtro anaeróbico de flujo ascendente
Ilustración 6 lecho de secado51
Ilustración 7 Reunión inicial de socialización del proyecto del PSMV del municipio
de Totoro

Ilustración 8 Áreas Tributarias 2 existentes Municipio de Totoró	59	
Ilustración 9 camara de rebose	59	
Ilustración 10 Tanque septico FAFA	60	
Ilustración 11 Camara de Cribado	61	
Ilustración 12 Tanque Séptico	61	
Ilustración 13 Lecho de Secado	62	

LISTA DE ANEXOS

Anexo 1. Orden de compra Sotará hoja 1	123
Anexo 2. Orden de compra Sotará hoja 2	124
Anexo 3. Orden de compra Sotará hoja 3	125
Anexo 4. Orden de compra Sotará hoja 4	126
Anexo 5. Orden de compra Totoró	127
Anexo 6. Acta 1 Sotará hoja 1	128
Anexo 7. Acta 1 Sotará hoja 2	129
Anexo 8. Acta 1 Totoró hoja 1	130
Anexo 9. Acta 1 Totoró hoja 2	131
Anexo 10. Resultados de laboratorio municipio de Sotará hoja 1	132
Anexo 11. Resultados de laboratorio municipio de Sotará hoja 2	133
Anexo 12. Resultados de laboratorio municipio de Totoró hoja 1	134
Anexo 13. Resultados de laboratorio municipio de Totoró hoja 2	135

RESUMEN

El trabajo de pasantía que se desarrolló en este documento se llevó a cabo en los municipios de Sotará y Totoró en el departamento del Cauca, e titula "APOYO A LA FORMULACIÓN DEL PLAN DE SANEAMIENTO Y MANEJO DE VERTIMIENTOS (PSMV) PARA LOS MUNICIPIOS DE SOTARÁ Y TOTORÓ CAUCA", Se identificaron las necesidades de información para formular un estudio de saneamiento y manejo de vertimientos, conforme la reglamentación establecida en la Resolución 1433 de 2004. [1]. deben estar articulados con los objetivos y las metas de calidad y uso que defina la respectiva autoridad ambiental competente para la corriente, tramo o cuerpo de agua receptor. Se elaboró un diagnóstico para brindar información general de los municipios Sotará y Totoró, Cauca sobre el estado actual de los sistemas de acueducto, alcantarillado, aseo y las condiciones de las fuentes receptoras de las aquas residuales.

En este documento se tuvieron en cuenta las principales fuentes de información que pueden aplicarse en la formulación de un estudio de saneamiento y manejo de vertimientos, además se realizó una prueba fisicoquímica y microbiológica, que permitió identificar los puntos de vertimientos, el tipo de cauce y el caudal de la fuente hídrica, para determinar en qué condiciones se está captando el agua. Los resultados serán comparados con el reglamento técnico del sector de agua potable y saneamiento básico

En la etapa final se diseñaron los modelos para documentar el estudio de saneamiento y manejo de vertimientos, de manera que facilite la migración de la información, de los programas, proyectos, actividades y metas que conformarán el plan. En esta fase se identificaron las condiciones ambientales en las cuales se encuentran los municipios de Sotará y Totoró, para ello se hizo una georreferenciación de la zona, y por medio de un sistema de información geográfica (SIG), se realizó un análisis espacial de la información, lo que permitió obtener cartografía, delimitación de las áreas de interés, coberturas temáticas del área de estudio.

Palabras clave: PSMV, Apoyo, Diagnóstico, Estrategias, Pruebas de Agua, Georreferenciación.

ABSTRACT

The internship work that was developed in this document was carried out in the municipalities of Sotará and Totoró in the department of Cauca. It is titled "SUPPORT FOR THE FORMULATION OF THE PLAN OF SANITATION AND MANAGEMENT OF DEADLINES (PSMV) FOR THE MUNICIPALITIES OF SOTARÁ AND TOTORÓ CAUCA ", the information needs were identified to formulate a study of Sanitation and Management of wastewater, according to the regulations established in Resolution 1433 of 2004. [1]. That talks about the Plans of Sanitation and Management of wastewater - PSMV must be articulated with the objectives and the goals of quality and use that define the respective competent environmental authority for the current, section or body of receiving water. Here, it was supported in the elaboration of the diagnosis by means of which general information of the Sotará and Totoró Cauca municipalities is provided and the current state of the aqueduct, sewage and toilet systems and the conditions of the receiving sources of the wastewater are established.

On the other hand, the main sources of information or reference that could be applied in the formulation of a sanitation and dumping management study were documented. In this phase, it was used to support physicochemical and microbiological tests, identification of dumping points, of the type of cause and the flow of the water source to determine in what conditions the water is being captured, the results will be compared with the technical regulation of the drinking water and basic sanitation sector

And finally, the models were designed to document the study of Sanitation and Management of wastewater, in a way that facilitates the migration of information, and of the programs, projects, activities and goals that will make up the plan. In this phase, the environmental conditions in which the municipalities of Sotará and Totoró are located were identified, for which a georeferencing of the area was made, and by means of a geographic information system (GIS), a spatial analysis of the information, which allowed obtaining cartography, delimitation of the areas of interest, thematic coverage of the study area.

Keywords: PSMV, Support, Diagnosis, Strategies, Water Testing, Georeferencing.

INTRODUCCIÓN

Aunque en Colombia, se ha venido tomando conciencia del problema que genera el no cuidar el agua, es prioritario aplicar las sanciones respectivas a los que infringen la norma y resaltar las obligaciones que tienen los diferentes actores involucrados directamente con los vertimientos domiciliarios. Por ello las autoridades ambientales deben exigir en los municipios y en sus empresas prestadoras de servicio de alcantarillado, el plan de saneamiento y manejo de vertimientos para ayudar a controlar las cargas contaminantes que se le están descargando a las fuentes hídricas y ayudar a atenuar el impacto.

En el departamento del Cauca, específicamente en los municipios de Sotará y Totoró, se hace necesaria la formulación del Plan de Saneamiento y Manejo de Vertimientos con un horizonte mínimo de 10 años, tiene como propósito fundamental crear una serie de programas, proyectos y actividades con su debido cronograma e inversiones, que se deben desarrollar, para lograr y avanzar en forma realista y concreta en el saneamiento; manejo y tratamiento de los vertimientos de las aguas residuales domesticas; de esta forma se contribuirá a la descontaminación de las fuentes de agua receptoras de la región, específicamente en el Río Piedras, en el municipio de Sotará y el Río Cofre en el Municipio de Totoró, según la resolución 0631 del 2015. [2], en la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de agua superficiales y al alcantarillado público y dictan otras disposiciones considerando: La Constitución Política en sus Artículos 79, 89 y 95 en su numeral 8, [3], establece la obligación del Estado de proteger la diversidad del ambiente, prevenir y controlar los factores de deterioro ambiental. El derecho de todas las personas a gozar de un ambiente sano, el deber de los ciudadanos de proteger los recursos culturales y naturales del país y velar por la conservación del ambiente;

Además el artículo 12 del Decreto 3100 de 2003, [4], que define que los prestadores del servicio de alcantarillado sujetos al pago de la tasa retributiva deberán presentar a la Autoridad Ambiental competente el PSMV, de conformidad con la reglamentación que para tal efecto expida el Ministerio de Ambiente. Vivienda y Desarrollo Territorial, el cual deberá contener las actividades e inversiones necesarias para avanzar en el saneamiento y tratamiento de los vertimientos. Dicho, plan contendrá la meta, individual de reducción de carga contaminante de los usuarios mencionados que se fijará por la Autoridad Ambiental competente, cuyo cumplimiento se evaluará de acuerdo con los compromisos establecidos en el PSMV.

1.1. PLANTEAMIENTO DEL PROBLEMA

En Colombia, la descarga de vertimientos sin tratamiento previo, ha generado consecuencias ambientales derivadas de esta práctica ya que, se ven afectados diferentes ecosistemas de fauna, flora, fuentes hídricas y los seres vivos colindantes a estos vertimientos, las entidades responsables de velar por el correcto tratamiento de estos vertimientos presentan excusas de toda índole, como falta de recursos económicos, la falta de gestión de los gobiernos anteriores y en otros casos la falta de conocimiento del tema ambiental en los ciudadanos y de los entes responsables.

En el departamento del Cauca, es normal ver que los diferentes municipios no cuentan con sistemas de tratamiento óptimos para el mejoramiento de la calidad de sus aguas residuales, realizando en la mayoría de los casos sus descargas en los cuerpos de agua más cercanos, siendo una acción, en la que no se requiere de acciones preventivas, inversión y desarrollo de tecnologías limpias e innovadoras para el tratamiento de las consecuencias ambientales derivadas de los altos porcentajes de materia orgánica y microorganismos que son vertidas en estas fuentes hídricas.

Específicamente en los municipios de Sotará y Totoró el crecimiento de los mismos, la falta de planeación, han llevado en los últimos años a un crecimiento desmedido de la contaminación ambiental por vertimientos de aguas residuales, [5]. En estos municipios, no se cuenta con un sistema de tratamiento idóneo de aguas residuales domésticas que permita controlar la contaminación que es dirigida a las fuentes hídricas de la región del Río Piedras en el municipio de Sotará y el Río Cofre en el Municipio de Totoró; situación que vulnera los derechos de la población, afectando el ambiente, provocando enfermedades, afectaciones en el ecosistema que vive en estas fuentes hídricas. La situación empeora debido a que no se cuenta con suficiente personal capacitado para la operación y mantenimiento de los sistemas de tratamiento, además de capacidad técnica para la gestión de proyectos y optimización de los mismos.

1.2. JUSTIFICACIÓN

En los municipios de Sotará y Totoró es necesario la formulación de sus PSMV , porque es un instrumento de Planificación, que tiene como propósito fundamental avanzar en el saneamiento, manejo y tratamiento de los vertimientos de las aguas residuales domésticas, contribuyendo así, a la descontaminación de las fuentes de aguas receptoras, brindándoles a sus habitantes un ambiente sano libre de enfermedades provenientes del agua.

La formulación de los PSMV permite conformar un conjunto de programas, proyectos y actividades, con sus respectivos cronogramas e inversiones, los cuales, se deben realizar siguiendo criterios establecidos por el Reglamento Técnico para el sector de Agua Potable y Saneamiento Básico – RAS. [6]. Estos deberán ser viables ambiental, social y económicamente para que se formulen a corto, mediano y largo plazo las metas de reducción como lo definen el decreto 1076 del 2015, y la resolución 0631 del 2015, de esta manera se podrá cumplir con el correcto tratamiento de estos vertimientos, en los municipios de Sotará y Totoró en el departamento del Cauca.

Por lo anterior, con este trabajo se pretende hacer una recopilación de información de tipo primario y secundario, que permita, en primer lugar, identificar el enfoque del PSMV y las acciones allí propuestas en torno a la problemática de contaminación y degradación del recurso hídrico de los municipios de Sotará y Totoró. En segundo lugar, a partir de la articulación con otros instrumentos y el análisis de los indicadores de seguimiento propuestos, establecer cuáles son las debilidades y potencialidades del instrumento y finalmente, hacer aportes que permitan formular y fortalecer el PSMV.

1.3. OBJETIVOS

1.3.1. Objetivo general

 Servir de apoyo en la formulación del Plan de Saneamiento y Manejo de Vertimientos (PSMV) para los municipios de Sotará y Totoró en el departamento del Cauca.

1.3.2. Objetivos específicos

.

- Identificar y documentar, las principales fuentes de información o referencia primarias y secundarias que puedan servir para el apoyo de la formulación del estudio del Plan de Saneamiento y Manejo de Vertimientos (PSMV) para los Municipios de Sotará y Totoró en el departamento del Cauca.
- Identificar y analizar el estado actual de los puntos de vertimientos para el apoyo en los monitoreos, para la toma de muestras fisicoquímicas y microbiológicas de las fuentes receptoras y vertimientos de aguas residuales de los municipios de Sotará y Totoró, en el departamento del Cauca.
- Apoyar el análisis que permita viabilizar la realización de objetivos de calidad y metas del plan de Saneamiento y Manejo de Vertimientos, (PSMV) para los municipios de Sotará y Totoró en el departamento del Cauca.

2. CAPÍTULO II. REFERENTES CONCEPTUALES

2.1. MARCO TEÓRICO

2.1.1. La Gestión Integral del Recurso Hídrico en el marco del desarrollo local

Diversas concepciones y posturas han sido situadas en términos de la definición misma del recurso hídrico o la cuenca hidrográfica, sus problemáticas y las relaciones de orden político, técnico, económico y social que se deben fomentar en términos de gobernanza, planificación y demás instancias y herramientas que permitan abordar dichos temas de una manera más integral y permitan soluciones acordes con las realidades que convergen en ecosistemas esenciales para la subsistencia del planeta. Dichos adelantos y discusiones han dado frutos en lo político – ideológico y lo administrativo, por ejemplo, la creación del Departamento y la Política de Gestión Integral del Recurso Hídrico para el territorio colombiano.

En primer lugar cabe definir el concepto de la gestión integral del recurso hídrico. "La Gestión Integrada de los Recursos Hídricos (GIRH) se puede definir como un proceso que promueve la gestión y el desarrollo coordinados del agua, la tierra y los recursos relacionados, con el fin de maximizar el bienestar social y económico resultante de manera equitativa, sin comprometer la sostenibilidad de los ecosistemas vitales". [7].

A partir de dicha definición para Colombia se establece una política nacional con una visión y horizonte de doce años, estando así vigente en el periodo que comprende los años 2010 – 2022, puesto que dichos procesos han de responder a una naturaleza cíclica que periódicamente reconoce nuevas realidades en términos de problemáticas, actores y oportunidades en cuanto a gestión, infraestructura y demás aspectos de relevancia de la temática que aborda. Dicha política dicta principios, objetivos y estrategias como Integrado del Recurso Hídrico [7], definen de forma sucinta, pero clara, el rumbo hacia donde deben apuntar las acciones que desarrollen cada una de las instituciones y de los usuarios que intervienen en la gestión integral del recurso hídrico. Dicha definición se considera

un hito a tener en cuenta desde el desarrollo del presente trabajo ya que, reconoce el papel fundamental del usuario que interviene dentro del manejo del recurso hídrico a lo largo y ancho del territorio nacional, en búsqueda de soluciones que en el papel resolverían problemáticas a partir del reconocimiento de la diversidad de realidades según el caso puntual a tratar, realidades que a su vez deberán reflejarse en planes, programas y proyectos específicos que converjan y tengan como faro orientador la Política, puesto que también se le atribuye un rol protagónico a la institucionalidad como eje central de la concepción y puesta en marcha de acciones a través de mecanismos de planificación, gestión y acciones puntuales en temas del manejo del recurso hídrico.

El esfuerzo de la construcción de una política y un modelo de principios rectores que guiaran el accionar en esta temática surge a partir de que " el principal esfuerzo para la gestión de los recursos hídricos se ha hecho a nivel institucional y normativo; así, los últimos 20 a 30 años han representado una intensa dinámica institucional, a través de la cual se han implementado mecanismos de gobierno del agua basados en concepciones disimiles en sus fundamentos conceptuales y metodológicos" [8], dicha problemática generó a lo largo del tiempo, en primera instancia, conflictos en términos de concepciones diversas sobre los temas que se debían abordar, la manera correcta de hacerlo y el papel que constituían los diversos actores.

Igualmente es importante definir hacia qué tipo de escenario de GIRH se está apuntado), se pueden definir tres tipos de escenarios. El primero de ellos corresponde a "seguir como hasta ahora", un enfoque en el cual no se reconocen problemáticas asociadas al recurso hídrico y su gestión. En segundo lugar, un escenario denominado "Económico, tecnológico y con participación del sector privado", en el cual se cree en las dinámicas de mercados y las grandes soluciones tecnológicas; y finalmente un escenario de "valores y estilos de vida" donde se busca rescatar los valores humanos, fortalecer la cooperación internacional y se enfatiza en la educación en miras a generar cambios de comportamientos y estilos de vida. [9].

Dichos escenarios se basan en el reconocimiento de que la gestión del agua no es de responsabilidad exclusiva del encargado, sino una responsabilidad compartida por múltiples sectores que usan el agua y, en definitiva, de la sociedad en su conjunto. Ello significa que todo proceso de gestión del agua requiere de compromisos, conocimiento y acción con una visión del Estado y la prospectiva de largo plazo.

2.1.2. Plan de Saneamiento y Manejo de Vertimientos

A inicios del Siglo XXI la problemática del manejo y recuperación del recurso hídrico a escala mundial se hacía imperativa. Basado en todo lo expuesto anteriormente, las discusiones académicas, técnicas y políticas en diversos estamentos e instancias decisorias revelaban cada vez más la necesidad de mecanismos capaces de dar remedio, en primera instancia, y que a su vez construyeran una perspectiva sostenible del uso y manejo de los recursos hídricos propios de los territorios, para generaciones futuras. Surge entonces a escala nacional, a partir del Documento CONPES 3177 de 2002, [10], una declaración que promovía la revisión, actualización y esfuerzo en temas de desarrollo normativo con el enfoque de generar acciones prioritarias y lineamientos del Plan Nacional de Aguas Residuales (Departamento de Planeación Nacional, 2002), dichas disposiciones desbocan en la construcción de metodologías propicias para la formulación, implementación y evaluación de mecanismos de planificación. Estos mecanismos se formalizan a partir de la Resolución 1433 del 2004, [1], en el marco, en su momento, del Decreto 3100 de 2003 [4], hoy derogado por el Artículo 12 del Decreto Nacional 2667 de 2012 [11], donde se abordan temas de tasas retributivas, sanciones y manejo adecuado en la utilización del recurso hídrico como receptor de vertimientos, temática en la que se centra el presente trabajo, promulgada en ese momento por el Ministerio de Medio Ambiente Vivienda y Desarrollo Territorial, por lo que se constituyen los Planes de Saneamiento y Manejo de Vertimientos (PSMV) en el territorio nacional.

La forma de estructurar dichos planes debe ser homogéneas, en general a partir de fases secuenciales como se establecen en la Guía Metodológica del Ministerio de Ambiente Vivienda y Desarrollo Territorial, [12], por lo que se establece a partir de ese momento un marco común para el desarrollo de dichos instrumentos, postulados en su esencia para el cumplimiento de objetivos claros y puntuales para la descontaminación de cuencas y cuerpos de agua a lo largo y ancho del territorio nacional. Dicha gestión realizada por las autoridades debe responder entonces a concepciones de orden jurídico en un marco general que va desde lo constitucional hasta lo resolutivo como se ha entendido a lo largo del desarrollo conceptual de los mismos, además de la necesidad de articulación y claridad de las autoridades e instituciones no solo directamente responsables, sino con funciones complementarias o de apoyo en el saneamiento del recurso hídrico a escala nacional, departamental y municipal.

2.1.3. Cuenca hidrográfica

A partir de dicha discusión, el concepto de cuenca hidrográfica ha cobrado relevancia en torno a cómo se debe organizar un territorio. A lo largo de la historia, se ha visto como los cuerpos de agua en sus diferentes formas conocidas como ríos, lagunas, quebradas, etc., han sido el elemento ordenador de las civilizaciones pasadas y las hoy constituidas, pues el agua, entendido más allá como un recurso, es una biomolécula, es decir es un elemento constitutivo de la vida misma. [13]

Desde el punto de vista técnico, por así decirlo, y como se contempla en la legislación colombiana, en el Código de los Recursos Naturales (Decreto. 2811 de 1974), una cuenca hidrográfica es concebida como "...el área de aguas superficiales o subterráneas, que vierten a una red hidrográfica natural con uno o varios cauces naturales, de caudal continuo o intermitente, que confluyen en un curso mayor, que a su vez, puede desembocar en un río principal, en un depósito natural de aguas, en un pantano o directamente en el mar." [13].

Desde una concepción espacio-temporal, una cuenca hidrográfica es entendida como una unidad territorial, que consta de un ancho, alto y largo, en la que a su vez se generan unas dinámicas caracterizadas por procesos naturales como gradación, erosión, sedimentación, cambios químicos, entre otros, que se producen en lapsos de tiempo determinados y determinantes. [14]. Pero, esta definición aún se queda corta, ya que no reconoce las dinámicas sociales, por tanto, es importante retomar la definición de Adamo desde la cual se concibe el concepto de cuenca para los investigadores donde define una cuenca hidrográfica como un "...ámbito territorial específico donde actúan fenómenos naturales y sociales; donde se asienta parte de una sociedad que es conflictiva y heterogénea (tanto dentro de la cuenca como en su exterior)". [14]. De hecho, esta visión sobre la cuenca permite entender la integralidad del sistema y por ende, a la hora de analizar las problemáticas en términos de causas, efectos y soluciones podrán tener un carácter de mayor complejidad pero que a su vez permitan dar una respuesta integral.

2.1.4. Contaminación del recurso hídrico

Los conflictos más recurrentes de las cuencas asociadas a centros urbanos, especialmente en América Latina, se pueden enmarcar en cuatro ejes que son el crecimiento demográfico, los servicios de abastecimiento de agua potable y saneamiento, la contaminación de las aguas y el drenaje urbano y ocupaciones de zonas de riesgo. [15]

En primer lugar, el crecimiento demográfico y la urbanización. En los países de América Latina, este fenómeno se caracteriza porque este tipo de proceso se ha venido dando en unas pocas ciudades y por lo general en las ciudades capitales. Este desarrollo urbanístico se ha caracterizado por la creación de extensas zonas urbanas marginales en la periferia, producto de una acelerada migración de poblaciones rurales, que carecen de una planificación en términos de infraestructura y servicios públicos.[15].

En segundo lugar, se encuentran los problemas asociados a los servicios de abastecimiento de agua potable y saneamiento, entre los cuales se encuentran el déficit en la cobertura de los servicios de saneamiento y tratamiento de aguas residuales, la falta de opciones de acceso a servicios de poblaciones con bajos ingresos, el alto índice de crecimiento poblacional, el deterioro y colapso de la infraestructura y por último la mala calidad del servicio. En tercer lugar, la contaminación de las aguas. Se considera que la principal fuente de contaminación es la descarga directa de aguas residuales de origen doméstico e industrial. A ello se suma la carencia de sistemas de tratamiento de aguas, la disposición inadecuada de residuos sólidos en cuerpos de agua y la no separación de las aguas domésticas, lluvias y residuales.

Por último, lo referente al drenaje urbano (sistema de alcantarillado) y ocupación de zonas de riesgo. Las ciudades latinoamericanas se caracterizan porque su sistema de drenaje es en su mayoría combinado, es decir que se transportan las aguas residuales y las aguas lluvia por una misma red, lo cual presenta una serie de desventajas como el aumento del volumen de las aguas a tratar y por ende en los costos de dicho tratamiento. Por otra parte, los sistemas de drenaje se caracterizan porque se han impermeabilizado los cauces de los cuerpos de agua debido a procesos de canalización, lo cual elimina el proceso de infiltración lo que se traduce en un aumento del flujo y volumen de agua de escorrentía, aumento de las probabilidades de riesgos de inundación por posibles incapacidad del sistema de drenaje para transportar volúmenes de agua en épocas de lluvia, y afectación de sistemas de regulación hídrica como lo son los humedales.

2.1.5. Dimensiones del desarrollo y su relación con la GIRH

El desarrollo es un concepto que se mantiene sobre la mesa de discusión en la esfera política, económica, académica e incluso social; en las cuales se debate desde la concepción misma del desarrollo y su categorización, hasta los indicadores cuantitativos que permitan su medición.

En términos de categorización se ha llegado a hablar de desarrollo económico, desarrollo humano y aún más vigente de desarrollo sostenible. Pero como bien lo menciona Boisier (1999) el desarrollo es un concepto que ha sido sujeto de "subjetivación" e "intagibilización", donde esta última se da cuando se reconoce que el desarrollo tiene unas dimensiones que hacen del desarrollo *per se* un concepto complejo que para entenderlo requiere enfoques holísticos, sistémicos y recursivos que radican en el paradigma propio de la complejidad. [9].

En ese esfuerzo por reconocer las dimensiones del desarrollo donde el desarrollo parte de una supra dimensión denominada *socio-cultural*, dando así al desarrollo connotado en cualquier categoría un peso antropológico, y unas dimensiones que se subsumen en esta, denominadas así: *ecológico-ambiental*, *político-ideológica*, *tecno-económica*, donde estás a su vez abarcan unas subdimensiones comprendidas como: *infraestructura de reproducción de relaciones*, *institucional administrativa y fiscal financiera*. A su vez, estas dimensiones del desarrollo tienen una relación con la gestión integral del recurso hídrico puesto que las problemáticas asociadas al recurso, se generan de unas dinámicas sociales que responden a una visión colectiva del desarrollo. Por tanto, es importante asumir el carácter de cada una de estas dimensiones a la hora de plantear soluciones. [9].

2.2. ANTECEDENTES

PLAN DE SANEAMIENTO Y MANEJO DE VERTIMIENTOS – PSMV DEL MUNICIPIO DE LOS CORDOBAS – CORDOBA [16]

La política de agua potable y saneamiento básico establece la necesidad de formular un plan de Manejo de Aguas Residuales donde sea viable y de sostenibilidad económica, social y ambiental para ello requiere articulación de instrumentos económicos y financieros y recursos para la inversión en tratamiento de aguas residuales, teniendo en cuenta la vulnerabilidad de las fuentes hídricas, así como la capacidad de pago de la población, la sostenibilidad financiera e institucional de las empresas para la prestación de los servicios de acueducto y alcantarillado y las metas de aumento de cobertura de dichos servicios.

Teniendo en cuenta la necesidad de avanzar en el mejoramiento de la calidad del recurso hídrico y el impacto generado por la aplicación simultanea de los instrumentos económicos de la política ambiental (tasa retributiva), se considera de suma importancia la formulación de planes de saneamiento y manejo de vertimientos por parte de cada municipio a fin de que se logre la recuperación y conservación de las fuentes, tramos o cuerpos de agua receptores de las descargas de aguas residual.

PLAN DE SANEAMIENTO Y MANEJO DE VERTIMIENTOS – PSMV MUNICIPIO DE SOTARÁ [17].

Una de las problemáticas ambientales que se ha intensificado durante los últimos años y que exige una acción inmediata de los municipios, es la de contaminación del recurso hídrico generada por las aguas residuales municipales. Las descargas de las aguas residuales municipales se han convertido en una de los problemas ambientales más críticos y crecientes, si se considera que el incremento poblacional de la mayoría de los centros urbanos es notable, debido a la situación socioeconómica y de orden público del país. Esta situación se refleja en el aumento de las descargas de tipo doméstico y productivo, deteriorando cada vez

más el estado de la calidad del recurso. La situación se hace crítica cuando la corriente tiene un uso definido aguas abajo, pues se alteran las condiciones de calidad del agua requeridas para el abastecimiento de actividades específicas (doméstica, agrícola, pecuaria, etc.) y la vida acuática. Es importante que la gestión para el manejo y tratamiento de las aguas residuales, no se reduzca simplemente al tratamiento de los vertimientos del alcantarillado municipal, debe trascender a una gestión más integral, reflejada en la reducción de cantidad de vertimientos, ampliación de la cobertura de recolección, formulación de planes de saneamiento, gestión de los proyectos de inversión, construcción de la infraestructura de tratamiento, seguimiento sanitario y ambiental y programas de educación ambiental, entre otros.

Por tal razón y considerando que es importante fortalecer la gestión del recurso hídrico en el municipio de Sotará, se presenta el siguiente Plan de Saneamiento y Manejo de PLAN DE SANEAMIENTO Y MANEJO DE VERTIMIENTOS – PSMV MUNICIPIO DE SOTARÁ 8 Vertimientos –PSMV- para la cabecera municipal. El Plan de Saneamiento y Manejo de los vertimientos (PSMV), se enmarca conforme a lo establecido por el documento CONPES 3177/2002, Plan Nacional de Manejo de Aguas Residuales, y el decreto 3100 de 2003, Tasas Retributivas por Contaminación, desarrollado por la Resolución 1433 de 2004 del Ministerio del Medio Ambiente, Vivienda y Desarrollo Territorial. [17]

2.3. BASES LEGALES

2.3.1. Marco Normativo

Tabla 1. Marco legal

Tabla 1.	-Artículo 79. Todas las personas tienen derecho a gozar
CONSTITUCIÓN	de un ambiente sano. [3].
POLÍTICA DE	-Artículo 80. El Estado planificará el manejo y
COLOMBIA	aprovechamiento de los recursos naturales, para

	garantizar su desarrollo sostenible, su conservación,
	restauración o sustitución.[3].
	- Ley 99 de 1993. Por la cual se crea el Ministerio del
	Medio ambiente, se reordena el sector público encargado
	de la gestión y conservación del medio ambiente y
LEYES	los recursos naturales renovables, se organiza el
	Sistema Nacional Ambiental- SINA, y se dictan otras
	disposiciones.[18] .
	- Ley 142 de 1994. Art 5º: Competencia de los municipios
	en cuanto a la prestación de los servicios públicos. Es
	competencia de los municipios en relación con los
	servicios públicos, que ejercerán en los términos de la ley,
	y de los reglamentos que con sujeción a ella expidan los
	concejos. [19].
	- Ley 373 de 1997. Art 1º: Programa para el uso eficiente
	y ahorro del agua. Todo plan ambiental regional y
	municipal debe incorporar obligatoriamente un programa
	para el uso eficiente y ahorro del agua. Se entiende por
	programa para el uso eficiente y ahorro de agua el
	conjunto de proyectos y acciones que deben elaborar y
	adoptar las entidades encargadas de la prestación de los
	servicios de acueducto, alcantarillado, riego y drenaje,
	producción hidroeléctrica y demás usuarios del recurso
	hídrico. Las Corporaciones Autónomas Regionales y
	demás autoridades ambientales encargadas del manejo,
	protección y control del recurso hídrico en su respectiva
	jurisdicción, aprobarán la implantación y ejecución de
	dichos programas en coordinación con otras
	corporaciones autónomas que compartan las fuentes que
	abastecen los diferentes usos. [20].
	-LEY 689 DE 2001. [21]. Por la cual se modifica

	narcialmente la Laur 440 de 4004 [40]
	parcialmente la Ley 142 de 1994.[19].
CONPES	Conpes 3177 de 2002. [10]. Establece los lineamientos
	para formular el Plan Nacional de Manejo de Aguas
	Residuales, con el objetivo de mejorar la calidad del
	recurso hídrico de la Nación. Busca promover la
	descontaminación y mejorar las inversiones y las fuentes
	de financiación y revisar y ajustar la Implementación de la
	tasa retributiva por contaminación hídrica.
DECRETOS	-Decreto 1076 de 2015 (decreto único reglamentario del
	sector ambiente desarrollo sostenible)[.25]
	-Decreto 3100 de 2003 [4] y Decreto 3440 de 2004. [22].
	Por medio de la cual se reglamentan las tasas retributivas
	por la utilización directa del agua como receptor de los
	vertimientos puntuales, se presentan algunas
	definiciones, la forma de calcular la tarifa de las tasas
	retributivas y de la tarifa regional y se dan algunas
	especificaciones sobre formas de cobro, análisis de las
	muestras, recaudo, entre otros aspectos.
	- Decreto 4728 de 2010 Artículo 34.[23]. Protocolo para el
	Monitoreo de los Vertimientos en Aguas Superficiales y
	Subterráneas. El Ministerio de Ambiente, Vivienda y
	Desarrollo Territorial expedirá dentro de los dieciséis (16)
	meses siguientes, contados a partir de la publicación del
	presente decreto, el Protocolo para el Monitoreo de los
	Vertimientos en Aguas Superficiales y Subterráneas, en el
	cual se establecerán, entre otros aspectos: el punto de
	control, la infraestructura técnica mínima requerida, la
	metodología para la toma de muestras y los métodos de
	análisis para los parámetros a determinar en vertimientos
	<u> </u>

	y en los cuerpos de agua o sistemas receptores.		
RESOLUCIONES	-Resolución 1433 de 2004. Por la cual se reglamenta el		
	artículo 12 del decreto 3100 de 2003, sobre los Planes de		
	Saneamiento y Manejo de Vertimientos. Se establece la		
	definición de los PSMV, los actores involucrados,		
	información que se debe presentar y se dictan las		
	medidas preventivas y sancionatorias. [1]		
	-Resolución 0631 de 2015: MINISTERIO DE AMBIENTE		
	Y DESARROLLO SOSTENIBLE Por la cual se establecen		
	los parámetros y los valores límites máximos permisibles		
	en los vertimientos puntuales a cuerpos de aguas		
	superficiales y a los sistemas de alcantarillado público y		
	se dictan otras disposiciones.[24]		

Fuente: Diseño propio

3. CAPÍTULO III. METODOLOGÍA

Para el apoyo en la formulación del Plan de Saneamiento y Manejo de Vertimientos (PSMV) para los Municipios de Sotará y Totoró Cauca, se planteará la ejecución de tres fases, las cuales permitirán alcanzar los objetivos formulados:

Fase 1 Identificación y documentación, de principales fuentes de información o referencia, primarias y secundarias.

Actividad 1

• El día 20 y 22 de Junio de 2018 se realizarán reuniones iniciales de socialización del proyecto del PMSV ante las principales entidades gubernamentales del municipio de Totoró y Sotará en acompañamiento de los ingenieros encargados Felipe Andrés Yanza, Oscar Alejandro Yanza, de la formulación de Plan de Saneamiento y Manejo de Vertimientos de los municipios de Sotará y Totoró, esta se realizarán en las instalaciones de la alcaldía de cada municipio con el fin de solicitar las fuentes de información primaria y secundaria como el Plan maestro de acueducto y alcantarillado, POT, POMCH, PBO, PMD, diseños de las PTAR existentes para poder así, generar un diagnóstico situacional del estado actual del Municipio.

Actividad 2

• Con la información que entregará el municipio de Totoró por medio del Ingeniero contratista ambiental del municipio José Anuar Troches (anexo 6 y 7 acta de reunión) y para el Municipio de Sotará por medio del Secretario de Planeación del Municipio Jaime Alberto Martínez (anexo 8 y 9 acta de reunión), se realizará un diagnóstico inicial de información general del municipio y con los planos entregados de alcantarillado y diseños de PTAR de cada municipio definirá el estado actual de la topografía municipal, y de las redes de acueducto y alcantarillado, esta información se corroborará realizando recorridos, los cuales permitirán identificar los principales

vertimientos de aguas residuales a monitorear de las fuentes hídricas afectadas Río Las Piedras en el municipio de Sotará y el Río Cofre en el municipio de Totoró, se realizará con el apoyo logístico de expertos en saneamiento que pusieron a disposición cada municipio.

Fase 2. Identificación y análisis del estado actual de los puntos de vertimientos, para la toma de muestras fisicoquímicas y microbiológicas en las fuentes receptoras de aguas residuales de los municipios de Sotará y Totoró, Cauca.

Actividad 1

- Con la supervisión de los ingenieros encargados Felipe Andrés Yanza, Oscar Alejandro Yanza al grupo logístico, se procedió a formular un plan de muestreo realizado por la consultoría, el cual, tuvo el número y nombre de vertimientos a monitorear, los principales parámetros de monitoreo aprobados por el decreto 0631 del 2015, instrumentos necesarios para el monitoreo y la logística para la preservación de las muestras que serán trasladadas al respectivo laboratorio y delegación de responsabilidades de las actividades a el personal de la consultoría.
- Con el plan de muestreo que realizó la consultoría se procedió a la identificación de los puntos de vertimientos en campo, para realizar el apoyo de pruebas fisicoquímicas y microbiológicas, a las cuales se le tomaron los principales parámetros DQO, DBO, PH, CONDUCTIVIDAD, OD, OD%, aforo de la fuente hídrica, estas se realizaron con el fin de analizar en qué condiciones se está captando el agua, y poder determinar la capacidad recuperación a sus condiciones normales después del vertimiento

 Las muestras se trasladaron al laboratorio CHEMILAB aprobado por el IDEAM para la realización de pruebas de desempeño y corroboración de los datos in situ tomados.

Actividad 2

• Una vez realizado el muestreo, se procedió apoyar la recopilación de la información obtenida para la formulación de los informes de monitoreo por municipio. Estos informes contarán con información recopilada y evaluada cómo: registro fotográfico, Georreferenciación, datos in situ, análisis de resultados de laboratorio, los cuales serán comparados con el reglamento técnico del sector de agua potable y saneamiento básico, según el decreto 0631 de 2015 capitulo V. artículo 8. (Parámetros fisicoquímicos y sus valores límites máximos permisibles en los vertimientos puntuales de agua residuales domésticas-ARD de las actividades industriales, comerciales o de servicio; y de las aguas residuales (ARD Y ARnD) de los prestadores de servicio público de alcantarillado a cuerpos de agua superficiales), estimación de cargas contaminantes, sistemas de remoción de cargas contaminantes e índices de calidad ICA.

FASE 3: Apoyo en el análisis, para el establecimiento de objetivos de calidad, programa, proyectos y metas del plan de Saneamiento y Manejo de Vertimientos, (PSMV) de los municipios de Sotará y Totoró Cauca

Actividad 1

 Tomando en cuenta el análisis realizado en las fases 1 y 2 se brindó apoyo en la formulación de programas, planteando programas de asistencia técnica y de formación de técnicos para dar una adecuada recolección, manejo, transporte y tratamiento de los vertimientos en cada municipio.

- Apoyo en la formulación de Proyectos de Operación y Mantenimiento del Sistema de Tratamiento de Aguas Residuales e Inspección del Sistema de Alcantarillado.
- Apoyo en la formulación de establecimiento de metas de reducción de cargas contaminantes a mediano y largo plazo, para garantizar la gestión de los municipios en el cumplimento del Plan de Saneamiento Básico para el Manejo de vertimientos.

Actividad 2

- Se analizó junto con la colaboración de los respectivos Alcaldes municipales de los municipios de Totoró y Sotará, los respectivos gerentes de las Empresas Prestadoras de Servicio de Acueducto y Alcantarillado y el equipo técnico de la unión temporal del Cauca, que los programas y proyectos a plantear serán viables desde el punto de vista técnico y ambiental. Se socializaron los análisis de la posible ejecución de los componentes en torno a los cuales se formularon los indicadores de seguimiento. Éste se divide en:
- Cumplimiento de metas de reducción a corto y largo plazo.
- Cumplimiento de programas de operación.
- Proyectos capacitación y educación.

4. CAPITULO IV RESULTADOS

4.1. DESARROLLO OBJETIVO 1 • IDENTIFICACIÓN Y DOCUMENTACIÓN, DE PRINCIPALES FUENTES DE INFORMACIÓN O REFERENCIA, PRIMARIAS Y SECUNDARIAS QUE PUEDAN SERVIR PARA EL APOYO DE LA FORMULACIÓN DEL ESTUDIO DEL PLAN DE SANEAMIENTO Y MANEJO DE VERTIMIENTOS (PSMV) PARA LOS MUNICIPIOS DE SOTARÁ Y TOTORÓ - CAUCA.

4.2. REUNIÓN INICIAL DE SOCIALIZACIÓN MUNICIPIO DE SOTARA

El día 22 de junio de 2018 se realizó la reunión inicial de socialización del proyecto del PSMV del municipio de Sotará y se solicita información de estado del saneamiento básico de alcantarillado e información necesaria para la realizar la formulación del PSMV.

Ilustración 1 Reunión inicial de socialización del proyecto del PSMV del municipio de Sotará

Fuente: Elaboración Propia

4.3. DIAGNÓSTICO DE INFORMACIÓN DEL MUNICÍPIO DE SOTARÁ

4.3.1. Localización

El municipio de Sotará está situado en el Centro del Departamento del Cauca a 41 km de distancia de la capital. Gran parte de su Municipio es montañoso y su relieve corresponde a la cordillera central. El relieve es fuertemente inclinado con pendientes de 7,12, 25, 50 y hasta 75%. Está localizada a los 2°19' de latitud norte y 76°34' de longitud Oeste de Greenwich. Sotará tiene una altura de 2.600 metros sobre el nivel del mar, su temperatura media está en 13°C y 14°C y una extensión de 517.766 kilómetros cuadrados. El Municipio tiene notables diferencias climáticas de temperatura, humedad, vientos. Y los meses en donde se presenta mayor precipitación son en noviembre y diciembre. A continuación, se ilustra la ubicación general del Municipio y la cabecera municipal.

4.3.2. Límites de descripción y división político administrativa

El municipio de Sotará limita al oriente con el municipio de Puracé, al occidente con el municipio de Timbío, Rosas y la Sierra, al norte con el municipio de Popayán, al sur con el municipio de la Vega.

Tabla 2 Barrios y limitaciones del Municipio de Sotará

ZONA	CORREGIMIENTOS	
ZONA RURAL Corregimiento Chapa, Chiribio, el crucero, Hato F Paz, el Carmen, Sanchacoco, Piedra León, Buena Resguardo Rio Blanco		
ZONA URBANA (Cabecera Municipal)	Barrio Centro, tTrajil, El Jardín, El Recuerdo, Belér Francisco José de Caldas, Alerces, Bella Vista, Triga Vía la paz, el Paramillo	
NORTE	Municipio de Popayán	
SUR	Municipio de la Vega	
ORIENTE	Municipio de Puracé	
OCCIDENTE	Municipio de Timbio	

Fuente: Elaboración Propia

4.3.3. Aspectos Demográficos

El municipio de Sotará con una proyección del DANE de acuerdo al censo del 2011, cuenta con 17.621 habitantes, entre ellos 8.267 equivalente al 52.2% de la

población son hombres y con 6.009 que equivalente al 47.8% son mujeres. El número de habitantes en la cabecera municipal es de 348 habitantes y en la zona rural se encuentran 17.273 habitantes.

4.3.4. Fuentes receptoras de aguas residuales

Con la información recopilada en las visitas a campo, se identificó un (1) puntos de descarga de aguas residuales servidas al Rio Las Piedras, y (1) sector la Quebrada Aguas Amarillas.

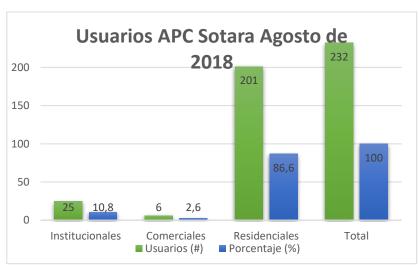
4.3.5. Diagnóstico general del sistema de saneamiento y manejo de vertimientos

La Cabecera municipal de Sotará cuenta con una Administración Pública Cooperativa de Acueducto, alcantarillado y aseo (APC Sotará "Agua de Peñas Blancas"), la cual brinda el servicio de Administración de los servicios Básicos, Operación y Mantenimiento del sistema de Alcantarillado y del Sistema de Tratamiento de Aguas Residuales Existente. La reposición y ampliación de las redes del sistema de alcantarillado está a cargo de la secretaría de Planeación e infraestructura de la Alcaldía Municipal de Sotará.

La cabecera municipal cuenta actualmente con 232 usuarios de acueducto y 226 usuarios en la parte de alcantarillado, reportando una cobertura del 100% para acueducto y del 99 % para alcantarillado. Los usuarios por fuera de la cobertura no se pueden conectar al sistema por su ubicación por lo cual disponen sus aguas residuales en sistemas individuales de saneamiento.

A continuación, se describe el número de usuarios actuales, información brindada por el gerente de la Administración Pública Cooperativa APC Sotará "Agua de Peñas Blancas" en las actas de reunión realizadas por la consultoría:

Tabla 3 Suscriptores Activos Agosto de 2018 – APC Sotará Aguas de Peñas Blancas


Ítems	Usuarios	Cobertura
Acueducto	232	100%
Alcantarillado	226	97,4%
Aseo	229	98,7%

Fuente: Gerente Diego Salazar APC Sotará Aguas de Peñas Blancas

Fecha del Reporte 31 de Julio del 2018 dispuesto en el Acta de Reunión No 2 del PSMV Sotará

La ACP no presentó un reporte de los usuarios residenciales, comerciales o institucionales o diferenciado por estrato, como soporte la APC soporto sus valores con información digitalizada en Excel de todos los usuarios registrados. Con los valores registrados, se realizó una evaluación de los usuarios institucionales, comerciales y residenciales, a continuación, se ilustra los valores encontrados:

Gráfica 1. Categorización de usuarios Acueducto APC Sotará 2018

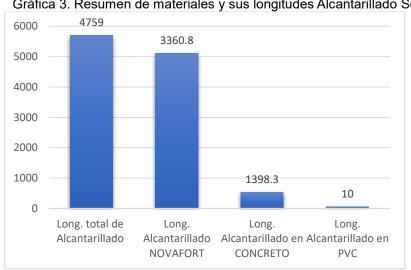
Fuente: Elaboración Propia

4.3.6. Diagnóstico de alcantarillado existente

Realizando una evaluación por parte de la consultoría, y considerando la información suministrada por la APC Sotará y la Secretaría de Planeación Municipal, se consideran tramos adicionales realizados posteriormente y se corrige alguna información predeterminada en el PMA e inventario, a continuación se presenta la tabla resumen representativa de los valores encontrados:

Tabla 4. Resumen chequeo de redes del sistema de alcantarillado

Items	Valor	Unidad
Numero de Cámaras	92	Unidades
Longitud total de Alcantarillado (ML)	4759	mL
Longitud Alcantarillado de 8 pulgadas	3745	MI
Longitud Alcantarillado de 10 Pulgadas	906	mL
Longitud Alcantarillado de 12 Pulgadas	74	mL
Longitud Alcantarillado de 16 Pulgadas	0	mL
Longitud Alcantarillado Redes Locales	3123	mL
Longitud Alcantarillado Colectores	893	mL
Longitud Alcantarillado Interceptor	585	mL
Longitud Alcantarillado Emisor Final	157	mL


Fuente: Elaboración Propia

La evaluación se realizó teniendo como base los planos de redes del sistema de alcantarillado dispuestos en el PMA, así mismo, evaluando se consideraron tramos adicionales y correcciones realizadas para la eliminación de los vertimientos

Gráfica 2. Resumen de Diámetros encontrados en el Sistema de Alcantarillado Municipal Sotará

Adicionalmente, se verificó que el alcantarillado municipal de Sotará cuenta con diferentes tipos de material cómo CONCRETO, PVC y NOVAFORT distribuidos en diferentes tramos del sistema dentro del casco urbano. A continuación, en la ilustración, se puede apreciar de forma resumida los diferentes tipos de materiales identificados del sistema de alcantarillado con sus respectivas longitudes

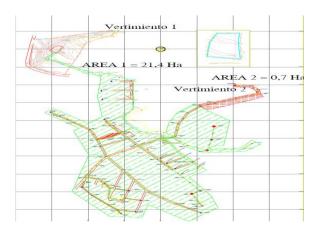
Gráfica 3. Resumen de materiales y sus longitudes Alcantarillado Sotará.

Fuente: Elaboración Propia

De acuerdo a la evaluación del sistema de alcantarillado municipal, se encontró que actualmente todas las viviendas presentan cobertura, los usuarios por fuera de los reportados por la APC, son viviendas que están por fuera del casco urbano y están en área denominada como sector rural, así mismo existen tramos que debido a su tiempo de instalación y/o material requieren de un plan de reposición progresivo con el objetivo de disminuir medidas de reposición por emergencia y aportes por infiltración o conexiones erradas encontradas en los monitoreos realizados. Sin embargo, la alcaldía municipal informó que el plan de desarrollo vigente no tiene priorizado la intervención de redes de alcantarillado durante la etapa de concertación del próximo plan de desarrollo con ocasión de la nueva administración del municipio, por lo cual las medidas dispuestas para reposición y/o ampliación se dispondrán en metas a mediano y largo plazo.

Para lo anterior, se realizó una identificación y revisión base de los planos de redes del sistema de alcantarillado dispuestos en proyecto de optimización y ampliación del alcantarillado de Sotará, así mismo, contrastando lo anterior con la información entregada por la APC Sotará, se identificaron los tramos proyectados (ampliación y reposición).

De igual forma, se hace la identificación por tipo de alcantarillado según su utilidad, actualmente se cuenta con 3123 ML de Redes locales, 893 ML de colectores, 585 ML de Interceptores y 157 ML de Emisor Final. A continuación, se ilustra lo anteriormente descrito según la evaluación realizada:

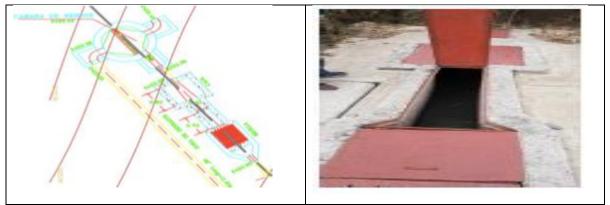


Gráfica 4. Resumen de Tipos de Alcantarillado del sistema

Fuente: Elaboración Propia

A partir de las inspecciones realizadas entre el mes de junio y julio de 2018 y la revisión de PMA 2009 se identificaron dos (2) vertimientos como se ha mencionado anteriormente, el principal que cubre el 95,4% del área total, y el 99% de los usuarios actuales, presenta una destinación a un Sistema de tratamiento de aguas con tratamiento Preliminar, Primario y Secundario y el 0,1% que corresponde a 5 viviendas que por pendiente no pueden descargarse sobre la PTAR y por su magnitud deberá considerarse como batería sanitaria

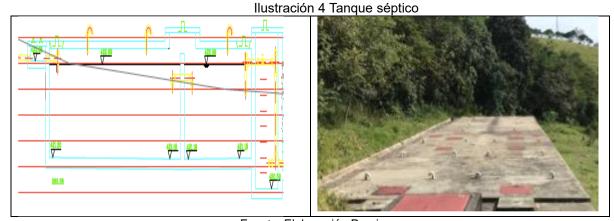
Ilustración 2 Áreas Tributarias existentes Municipio de Sotará


4.3.7. Sistemas de tratamientos del municipio de Sotará

El sistema de tratamiento de aguas residuales del municipio de Sotará cuenta la siguiente tecnología

4.3.7.1. Cámara de alivio, Cámara de distribución de caudales

Cámara de cribado: Sistema creado para retener sólidos gruesos, provenientes del alcantarillado sanitario, consta de sistema de desarenación y rejillas con soporte de bandeja para recolección de sólidos en períodos de limpieza y mantenimiento según manual de operación y mantenimiento. La Cámara de cribado tiene 3.92m largo y 0.50 m de profundidad por 1.10m de ancho (la cámara entrada), 0.60m (en la garganta) y 0.90m (en donde se encuentra la rejilla). (Ilustración 3)


Ilustración 3 Cámara de alivio, Cámara de distribución de caudales

Fuente: Elaboración Propia

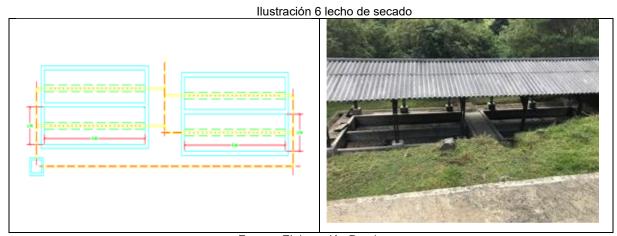
4.3.7.2. Tanque séptico:

El tanque séptico cuenta con dos (2) compartimentos de 10,80 m largo por 3,4 m de ancho y aproximadamente 2.32m de profundidad cada uno, es de tipo volumétrico, carga orgánica de 0,046 kg/hab- día, volumen de sedimentación para lodos del 30% del volumen del tanque. (Ilustración 4)

Fuente: Elaboración Propia

4.3.7.3. Filtro anaeróbico de flujo ascendente:

El Filtro Anaerobio cuenta con dos (2) compartimientos de 11.30m de largo por 3.4m de ancho y aproximadamente 2.34m de profundidad cada uno, una vez el agua filtrada es recogida en la parte superior del filtro anaerobio por medio de una


tubería de diámetro 4" la cual está ubicada en el sentido longitudinal del tanque siendo suficiente para transportar el caudal efluente de la planicie (ilustración 5)

Fuente: Elaboración Propia

4.3.7.4. Lecho de secado

Como sistema complementario del tratamiento de las aguas residuales se encuentra el lecho de secado de lodos que consta de cuatro compartimientos cada uno con 5.90 m de largo por 1.70m de ancho y aproximadamente 0.90 m de profundidad, la deshidratación de los lodos en el lecho se lleva a cabo por dos mecanismos filtración y evaporación. (ilustración 6)

Fuente: Elaboración Propia

.

4.4. REUNIÓN INICIAL DE SOCIALIZACIÓN MUNICIPIO DE TOTORÓ

El día 20 de junio de 2018 se realizó la reunión inicial de socialización del proyecto del PSMV del municipio de y se solicita información de estado del saneamiento

básico de alcantarillado e información necesaria para la realizar la formulación del PSMV.

Ilustración 7 Reunión inicial de socialización del proyecto del PSMV del municipio de Totoro

Fuente: Elaboración Propia

4.5. DIAGNÓSTICO DE INFORMACIÓN DEL MUNICIPIO DE TOTORÓ

4.5.1. Localización

El municipio de Totoró limita por el Norte con el municipio de Cajibio y Silvia, por el Sur con el área en litigio entre el departamento del Cauca y el departamento del Huila, al igual que con Puracé y Popayán, por el Oeste con una parte de Popayán y Cajibio y por el Este con Inzá

Norte: Cajibio y Silvia

Oeste: Inzá

Oeste: Popayán Cajibio

Sur: departamento del Huila, Puracé, Popayán Limites de descripción y división

político administrativa.

ZONA Barrio

ZONA URBANA (Cabecera Municipal)

Colombia, Belén, Centro, Estonia, libertador,

Fuente: Elaboración Propia

4.5.2. Aspectos Demográficos

Según el DANE, La población proyectada para el municipio de Totoró en el año

2016 es de 20.419 habitantes que corresponde al 1,5 % de la población total del

departamento. De este total de personas, 9.964 son mujeres y 10.455 son

hombres. La gran mayoría de la población habita en la zona rural y pertenecen a

las comunidades indígenas. Además, casi el 50% de la población total es menor

de 18 años.

4.5.3. Fuentes receptoras de aguas residuales

El efluente de aguas residuales de la PTAR del Barrio Colombia y la PTAR Las

Vueltas, en el casco urbano se descarga a una corriente superficial denominada

Rio Cofre, la cual tiene capacidad de recibir el efluente tratado de la PTAR.

El río Cofre nace a una altura de 3.400 metros sobre el nivel del mar, tiene un área

de 21.590 ha, las cuales corresponden al municipio de Totoró y representa el 52%

del municipio, sus afluentes principales son: Río Molino, las quebradas Michicao,

Perezosa, La Victoria y las quebradas Gallinazo y Sabaleta que nacen y fluyen en

territorio del municipio de Totoró.

4.5.4. Diagnóstico general del sistema de saneamiento y manejo de

vertimientos

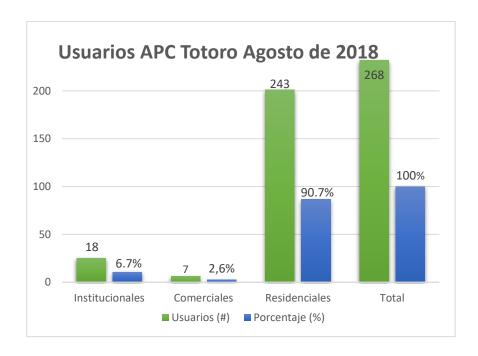
53

La Cabecera municipal de Totoró cuenta con una Administración Publica Cooperativa de Acueducto, alcantarillado y aseo (APC Totoró), que administra los servicios básicos, operación y mantenimiento del sistema de alcantarillado y de los Sistemas de Tratamiento de Aguas Residuales existentes (PTAR Colombia y PTAR Sector Las Vueltas). Las reposiciones y ampliaciones de las redes del sistema de alcantarillado son realizados por el Municipio, a través de los recursos de Pre inversión e inversión existente en el Plan Departamental de Aguas (PDA). Por otro lado, las actividades de mantenimiento y operación de cada PTAR están cargo de la APC.

Según reporte de la APC Totoró, actualmente se cuenta con 277 suscriptores en total para la cabecera municipal, de los cuales, 263 usuarios son de acueducto y 268 usuarios son del sistema de alcantarillado, reportando una cobertura del 94,9% para acueducto y del 96,7 % para alcantarillado.

Los usuarios por fuera de la cobertura no pueden conectarse al sistema de alcantarillado por su ubicación geográfica por lo cual disponen sus aguas residuales en sistemas individuales de saneamiento.

A continuación, se describe el número de usuarios actuales, información brindada por la gerente de la Administración Pública Cooperativa APC Totoró y como consta en las actas de reunión realizadas por la consultoría:


Tabla 6. Usuarios activos de acueducto y alcantarillado, del municipio de Totoró

Ítems	Usuarios	Cobertura	
Acueducto	263	94.94%	
Alcantarillado	268	96.7%	

Fuente: Elaboración Propia

En el mismo reporte, se establecen los usuarios categorizados por tipo de uso entre residencial, comercial y oficial que se presentan en la siguiente gráfica.

Gráfica 5. Categorización de usuarios Alcantarillado APC Totoró 2018

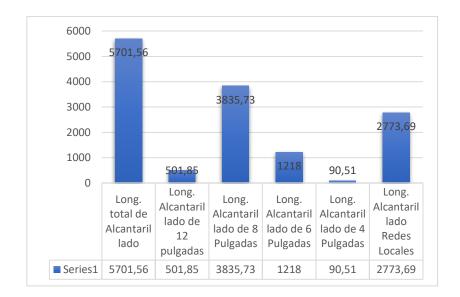
4.5.5. Diagnóstico de alcantarillado existente en Totoró

El sistema de alcantarillado de la cabecera municipal de Totoró, cuenta con un sistema de alcantarillado combinado dividido en dos áreas tributarias, las cuales, se conectan de forma independiente a través de un emisario final o colector de llegada a dos plantas de tratamiento de aguas residuales respectivamente (PTAR Barrio Colombia y PTAR Sector Las Vueltas).

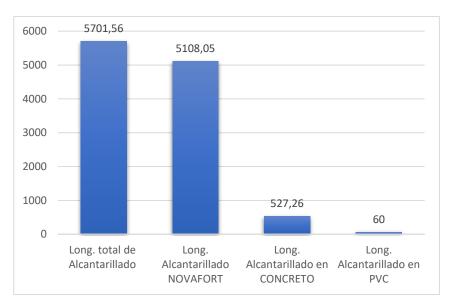
En general, el sistema presenta actualmente 109 cámaras de inspección. Se puede inferir que el sistema de alcantarillado municipal se encuentra en buen estado, aunque se presentan tramos sin funcionamiento debido a problemas de pendiente y otros clausurados debido a reubicación de acometidas conectadas hacia otros tramos del sistema. La cobertura al año base (2018) del sistema se considera en 96,7% con 268 usuarios.

Luego de la evaluación por parte de la presente consultoría, y considerando la información suministrada por la APC Totoró y la Secretaria de Planeación

Municipal, se establece el inventario actual de los tramos del alcantarillado. A continuación, se presenta la tabla resumen de la evaluación:


Tabla 7. Resumen chequeo de redes del sistema de alcantarillado

Ítems	Valor	unidad
Numero de cámaras	109	unidades
Viaductos	3	unidades
Longitud total de alcantarillado	5701.56	ML
Longitud alcantarillado 12 pulgadas	501.85	ML
Longitud alcantarillado 8 pulgadas	3835.73	ML
Longitud alcantarillado 6 pulgadas	1218	ML
Longitud alcantarillado 4 pulgadas	90.51	ML
Longitud de alcantarillado redes locales	2773.69	ML
Longitud alcantarillado colectores	2651.89	ML
Longitud de alcantarillado interceptores	264.79	ML
Longitud alcantarillado emisor final	4.94	ML


Fuente: Elaboración Propia

La evaluación se realizó teniendo como base los planos de redes del sistema de alcantarillado dispuestos en el PMA, esta consultoría presentó el siguiente resumen de diámetros encontrados en el Sistema de Alcantarillado Municipal Totoró, tal como se presenta en la gráfica a continuación.

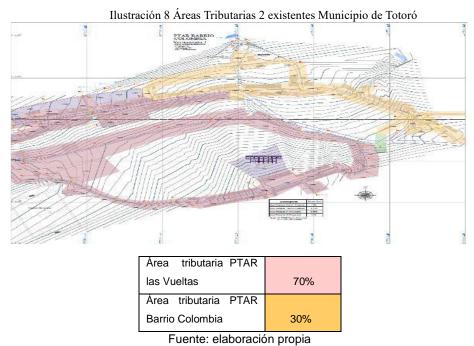
Gráfica 6. Resumen de diámetros y longitudes Alcantarillado Municipal de Totoró

Adicionalmente, se verificó que el alcantarillado municipal de Totoró cuenta con diferentes tipos de material cómo CONCRETO, PVC y NOVAFORT, distribuidos en diferentes tramos del sistema dentro del casco urbano. A continuación, en la gráfica, se puede apreciar de forma resumida los diferentes tipos de materiales identificados del sistema de alcantarillado con sus respectivas longitudes.

Gráfica 7. Resumen de materiales y sus longitudes Alcantarillado Totoró

Para lo anterior, se realizó una identificación y revisión base de los planos de redes del sistema de alcantarillado dispuestos en proyecto de optimización y ampliación del alcantarillado de Totoró, así mismo, contrastando lo anterior con la información entregada por la APC Totoró, se identificaron los tramos proyectados (ampliación y reposición) y construidos en un período no mayor a 10 años.

De igual forma, se hace la identificación por tipo de alcantarillado según su utilidad, actualmente se cuenta con 2773,7 ML de Redes locales, 2651,9 ML de colectores, 264,79 ML de Interceptores y 4,94 ML de Emisor Final. A continuación, se ilustra lo anteriormente descrito según la evaluación realizada:



Gráfica 8. Resumen de Tipos de Alcantarillado del sistema

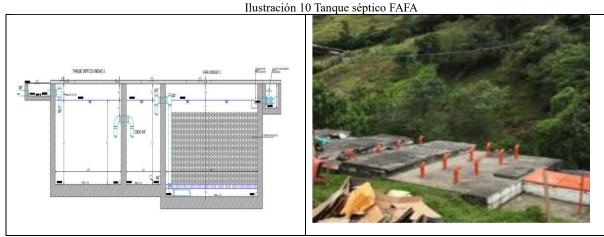
Fuente: Elaboración Propia

Según el presente diagnóstico del sistema, se establecen dos vertimientos a considerar: el primero recibe las aguas desde uno de los tributarios o sector por el cual está dividido el sistema de alcantarillado municipal de Totoró y que resulta ser el de mayor cobertura (70%) que vierte las aguas residuales al cuerpo receptor río Cofre, luego del tratamiento realizado por la PTAR sector Las Vueltas. El segundo vertimiento, al igual que el anterior, recoge las aguas del tributario o sector restante, que resulta ser de menor tamaño (30%) y es conducido hacia la PTAR

Barrio Colombia (ilustración 8) para finalmente, al igual que en el anterior sector, ser depositado en el cuerpo receptor río Cofre.

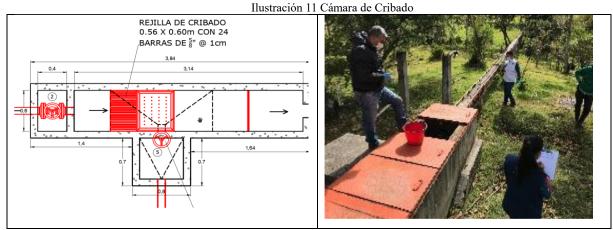
4.5.6. Sistema de tratamiento de aguas residuales del municipio de Totoró

4.5.6.1. Cámara de Rebose:


La cámara de rebose presenta un buen estado en su estructura, en el día del monitoreo, no se identificó que existiera mal funcionamiento. La entrada es en tubería de 8 pulgadas y conecta con el sistema de cribado. (ilustración 9)

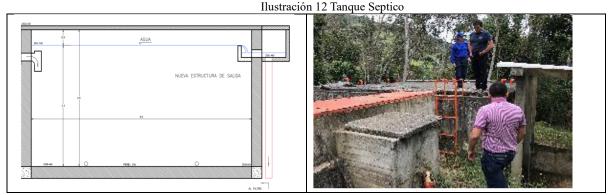
4.5.6.2. Tanque Séptico y FAFA:

Dentro de las visitas técnicas realizadas, se observó que la cámara de distribución de caudales, no presenta un buen funcionamiento, desviando una gran parte del caudal a solo una línea o módulo del sistema, afectando su capacidad, aumentando el proceso de mantenimiento y las remociones del sistema. La capacidad de cada módulo del séptico es de 35 m³ y el volumen de cada módulo en el sistema FAFA, es de 16,2 m³.


Lecho de Secado de Lodos: el techo no presenta las condiciones constructivas óptimas, sin embargó cumple con su funcionamiento, presenta un lecho en arena y grava y se proyecta para su optimización a mediano plazo. (ilustración 10)

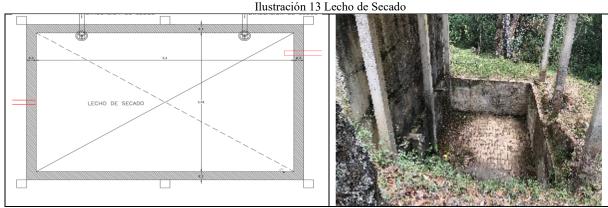
Fuente: Elaboración Propia

4.5.6.3. Cámara de Cribado:


El sistema de cribado, actualmente no está con un óptimo funcionamiento, por lo cual se establece dentro de las proyecciones su optimización respectiva. (ilustración 11)

Fuente: Elaboración Propia

4.5.6.4. Tanque Séptico:


El tanque séptico es el único sistema que actualmente está funcionando en la PTAR Las Vueltas sin embargo de acuerdo a lo monitoreado no presenta las remociones proyectadas. Actualmente el Séptico presenta un volumen de 63 m3 y solo un módulo. (Ilustración 12)

Fuente: elaboración propia

4.5.6.5. Lecho de Secado de Lodos:

Las estructuras se muestran en buen estado, aunque con falta de mantenimiento. Actualmente cuenta con techo en buen estado. (ilustración 13)

4.6. DESARROLLO OBJETIVO 2: • ANALIZAR EL ESTADO ACTUAL E IDENTIFICAR LOS PUNTOS DE VERTIMIENTOS, PARA LA TOMA DE MUESTRAS FISICOQUÍMICAS Y MICROBIOLÓGICAS DE LAS FUENTES RECEPTORAS DE AGUAS RESIDUALES DE LOS MUNICIPIOS DE SOTARÁ Y TOTORÓ CAUCA.

4.7. PLAN DE MUESTREO DEL MUNICIPIO DE SOTARÁ

Realizar el monitoreo compuesto y puntual de los vertimiento representativo y fuente hídrica superficial de la cabecera municipal de Sotará, con el objetivo de cumplir con las obligaciones dispuesta en el contrato de consultoría 346 de 2017 con EMCASERVICIOS

Tabla 8 Puntos de muestreo se dispondrán los puntos de monitoreo de la siguiente manera

Punto No.	Descripción
Punto 1	Entrada PTAR Sotará
Punto 2	Salida PTAR Sotará
Punto 3	Río Las Piedras Aguas Arriba Vertimiento PTAR Sotará
Punto 4	Río Las Piedras Aguas abajo a 150 metros del Vertimiento PTAR Sotará
Punto 5	Vertimiento barrio Belén

Tabla 9 Equipo de trabajo

Nombre	Nombre	
Cargo	Cargo	
Oscar Antonio Yanza	Oscar Antonio Yanza	
Conductor y Técnico especializado	Conductor y Técnico especializado	
Eduar Erazo	Eduar Erazo	
Técnico especializado	Técnico especializado	
Mauricio Vidal	Mauricio Vidal	
Técnico especializado	Técnico especializado	

DURACION DE LA JORNADA: 1 día **REQUERIMIENTO DEL LABORATORIO**

a. Tarros Plásticos: 4 Litros por Punto

b. Tarros de Vidrio: 1 Litro por Punto

c. Vertimientos: 2 Tarro plástico y 1 Tarro de Vidrio por punto

d. Fuente Hídrica: 1 Tarro Plástico de 2 litros por punto.

Tabla 10 TABLA DE RESPONSABILIDADES

Nombre	Cargo	
Oscar Antonio Yanza	 Organizar los implementos de monitoreo calibración de equipos multiparametros EL D ANTERIOR. Usar Lista de Chequeo 1. Notificación de los implementos faltantes Felipe Yanza, para su compra con anticipación. Logística de Transporte. (determinar I duraciones de viajes, regreso e inconveniente en las vías). 	
Eduar Erazo	en las vías). • Notificación a los municipios del día monitoreo OJO • Impresión de formatos de Custodio necesar para cada punto de monitoreo • Rotulación de tarros plásticos y de vid necesarios en el monitoreo. EL DÍA ANTERIOF • Chequeo Final de los implementos al final de jornada de monitoreo. (Equipos Multiparametro • Entrega de todos los elementos de protecc personal a cada integrante del equipo de trabaj • Disponer las muestras con la preservac adecuada al laboratorio.	
Mauricio Vidal	 Molinete calibrado y en buen estado Equipo multiparametros adicional Chequeo Final de los implementos al final de la jornada de monitoreo. (Molinete). 	
Sebastián Oliva	Monitoreo de los puntos seleccionados	

Juliana Ordoñez	 Revisión y chequeo de todos los implementos del monitoreo, chequeo de la calibración de los equipos multiparametros y del buen rotulo de los tarros plásticos. EL DIA ANTERIOR Tomar registro fotográfico y georreferenciación de los puntos de monitoreo. Disposición de alícuotas para cada punto de monitoreo. Digitalizar los datos de campo en los formatos de custodia. Organizar registro fotográfico de las visitas por carpetas de cada vertimiento y municipio. Chequeo Final de los implementos al final de la jornada de monitoreo. (Todos los Implementos) Evaluar el uso adecuado los elementos de 	
Alejandro Yanza	 Logística de monitoreo Responsable de Calidad del Monitoreo Evaluación y determinación de los puntos de calidad de las fuentes hídricas Tomar registro fotográfico y georreferenciación de los puntos de monitoreo Disposición de alícuotas para cada punto de monitoreo 	

Tabla 11 IMPLEMENTOS DE MONITOREO (LISTA DE CHEQUEO 1)

Lugar: CABECERA MUNICIPAL DE SOTARA			
Fecha: 12 DE JULIO DE 2018			
Responsable del Chequeo:			
Implemento:	Unidades	Chequeo	
Equipo multiparametros calibrado	2		
Molinete calibrado	2		
Formatos de custodia (vertimiento y fuente hídrica)	6		
Tablas para escribir	3		
Nevera grande para disponer las muestras al final	1		
Nevera pequeña para conservación parcial durante el monitoreo	1		
Bolsas de Hielo	5		
Caja de guantes de nitrilo (garantizar 3 pares para cada persona)	1		
Caja de Tapabocas (garantizar 2 pares para cada persona)	1		
Dispensador de alcohol portátil y personal	5		
Trajes de monitoreo	4		
Mascaras de monitoreo	2		
Traje para monitoreo de fuentes hídricas	2		
Botas plásticas	2		
Probetas de 1 litro o 1000 mL	4		
Probetas de 250 mL o menor	4		
Tarros plásticos de 2 Litros	10		

Tarros de vidrio de 1 Litro (en caso de haber de 500 MI disponer el doble de cantidad)	3	
Agua destilada	1	
Beaker	1	
Cronómetros	3	
Metro	1	
Decámetro	1	

4.8. IDENTIFICACIÓN Y TOMA DE MUESTRAS DE LOS PUNTOS DE VERTIMIENTOS SOTARÁ

Evaluando los planos suministrados y actualizados de acuerdo al diagnóstico presentado anteriormente, se identifican dos vertimientos dentro de la cabecera municipal, el primero y principal correspondiente al 99% de los usuarios ubicado en la salida de la PTAR municipal y el segundo correspondiente al 1% de los usuarios (6 viviendas aproximadamente) ubicado en el barrio Belén. Tomando en cuenta la evaluación de las redes se procede a realizar los Monitoreos respectivos el día 6 de junio del 2018, a continuación:

El monitoreo de la cabecera municipal de Sotará consistió en realizar un muestreo de ocho horas, cuyo punto fue: ilustrados a continuación.

Tabla 12. Puntos de monitoreo municipio de Sotará

Punto No.	Sitio Muestreo
1	Entrada PTAR Sotará
2	Vertimiento 1 Salida PTAR Sotará
3	Rio las Piedras aguas arriba vertimiento PTAR Sotará
4	Rio las piedras aguas abajo vertimiento PTAR Sotará
5	Vertimiento 2 Barrio Belén

Se recolectaron alícuotas, cada veinte minutos para la muestra representativa y su posterior determinación de indicadores fisicoquímicos en cada uno de los puntos, los resultados determinan las cargas contaminantes y las concentraciones finales descargadas. A continuación, se evidencia la tabla de los sitos de Muestreo

imagen 1 Sitios de muestro Sotará Registro fotográfico Punto 1 Entrada PTAR Sotará

Imagen 3. Sitios de muestro Sotará Registro fotográfico Punto 3 Aguas arriba Vertimiento PTAR Sotará

Imagen 4. Sitios de muestro Sotará Registro fotográfico Punto 4 Aguas abajo Vertimiento PTAR Sotará

Imagen 5. Sitios de muestro Sotará Registro fotográfico Vertimiento 2 Barrio Belén

4.8.1. Parámetros IN SITU

Se midieron parámetros durante el monitoreo como: pH (Unidades), Temperatura (oC), Conductividad (us/cm) y Oxígeno Disuelto (mg/L) con sondas multiparamétricas, debidamente verificados y calibrados, para su buen funcionamiento. El caudal (L/s) se determinó volumétricamente (cantidad de volumen (L) en cierta cantidad de tiempo(s)) y por medio de Molinete según la situación lo ameritara todo según lo establece el Protocolo del IDEAM. En las siguientes tablas se registran los datos de campo obtenidos del monitoreo los respectivos puntos.

Tabla 13. Datos in situ (Q, pH y Temp), Punto 1 Entrada PTAR Sotará

	Velocida d	Lamina (I)	Temp. ºC	pH Unidad	Conductivida d µS/cm	Q (L/s)
MAXIMO	0,01	0,11	17,80	7.30	380,00	0,35
MINIMO	0,010	0,068	14,900	6.820	107,000	0,218
PROMEDIO	0,01	0,09	16,16	7.12	237,11	0,29

Tabla 14. Datos in situ (Q, Ph, conductividad y Temp), Punto 2 Vertimiento Salida PTAR Sotará

Hora	Volumen (L)	Tiempo (s)	Temp. ⁰C	pH Unidad	Conductividad µS/cm	Q (L/s)
MAXIMO	0,01	0,11	17,80	7.30	380,00	0,04
MINIMO	0,010	0,068	14,900	7.01	107,000	3,70
PROME DIO	0,01	0,09	16,16	7.30	237,11	0,07

Fuente: Elaboración Propia

Tabla 15. Datos in situ (Q, Conductividad, pH y Temp), Punto 3 aguas arriba Rio Las Piedras

Hora	Temp. ºC	pH Unidad	Conductividad µS/cm	Oxígeno Disuelto (mg/L)
10:20	13,14	7,59	26,00	8,11

Fuente: Elaboración Propia

Tabla 16. Aforo Punto 3 aguas arriba Rio Las Piedras

	Ancho total :1.5 m							
Sección	Velocidad de caudal	Profundid ad	Ancho (m)	Área	Caudal			
1	0.2	0.25	0.50	0.125	0.025			
2	0.2	0.34	0.50	0.17	0.034			
3	0.3	0.28	0.50	0.14	0.042			
	Caud	0.101						
	Cau	101						

Tabla 17. Datos in situ (Q, conductividad, pH y Temp), Punto 4 aguas abajo Rio Las Piedras

Hora	Temp. ºC	pH Unidad	Conductividad µS/cm	Oxígeno Disuelto (mg/L)
11:00	13,50	7,48	30,00	7,48

Tabla 18. Datos in situ (Q, conductividad, pH y Temp), Punto vertimiento 2 Barrio Belén

Hora	Volumen (L)	Tiempo (s)	Temp. ºC	pH Unidad	Conductividad µS/cm	Caudal L/s
MAXIMO	1,00	361,20	16,20	7,47	211,00	361,20
MINIMO	0,910	41,440	14,410	7,210	64,000	37,710
PROMEDIO	0,96	201,32	15,31	7,34	137,50	199,46

Fuente: Elaboración Propia

Tabla 19. Datos in situ (Q, conductividad, pH y Temp), Punto 6 aguas arriba Barrio Belén

Hora	Temp. ºC	pH Unidad	Conductividad µS/cm	Oxígeno Disuelto (mg/L)
10:40	17,00	7,01	72,00	7,21

Fuente: Elaboración Propia

4.8.2. Georreferenciación

La Georreferenciación pertinente para los dos puntos de muestreo corresponden a:

Tabla 20. Georreferenciación puntos de muestreo de monitoreo de vertimientos de la cabecera municipal de Sotará

	Georreferenciación (Coordenadas geográficas)							
	N	ASNM						
	2°15'26"	76°36'59"	2461					
2	2°15'29"	76°36'56"	2451					
3	2°15'30"	76°36'55"	2443					
4	2°15"35	76°36"60	2447					

5	2°15'27"	76°36'44"	2473
6	2°15'28"	76°36'45"	2470

4.8.3. Resultados de laboratorio

Las muestras recolectadas, se transportaron hasta el laboratorio acreditado por el IDEAM, cumpliendo con las especificaciones en el protocolo del IDEAM, para su análisis correspondiente.

En las siguientes tablas, se presentan los parámetros fisicoquímicos, requeridos por la Resolución 631 de 2015 determinados por el laboratorio de CHEMILAB

Tabla 21. Resultados Fisicoquímicos Entrada y Salida PTAR (Vertimiento 1). (anexo 10).

PARÁMETRO	UNIDAD	PUNTO 1 ENTRADA PTAR	PUNTO 2 SALIDA PTAR SOTARA	LIMITERESOLUCI ÓN 0631 2015
Coliformes Fecales Termotolerantes	NMP/100mL	-	980400	NA
DBO5 (Demanda Bioquímica de Oxígeno)	mg O2/L	108	70,3	90
DBO5 Disuelta	mg O2/L	-	41,3	AYR
Detergentes - Tensoactivos (SAAM)*	mg SAAM /L	-	1,98	AYR
DQO Disuelta	mg O2/L		79,94	NA
DQO*	mg O2/L	238	123	180
Dureza Total*	mg CaCO3/L	-	51,4	NA
Fósforo total*	mg P/L	-	3,03	AYR
Grasas y Aceites*	mg/L	27	2,88	20
Hidrocarburos totales (TPH)*	mg/L	-	1,36	AYR
Nitratos*	mg NO3/L	-	37,21	AYR
Nitritos*	mg NO2/L	-	<0,02	AYR
Nitrógeno amoniacal (Amonio)*	mg/L NH3-N	-	6,06	AYR
Nitrógeno total Kjeldahl	mg N/L	-	17,9	AYR
Ortofosfatos* (mg PO4/L)	mg PO4/L	-	2,37	AYR
Oxigeno disuelto*	mg O2/L	-	0,93	NA
pH *	Und pH	6,75	7,05	6 a 9
Solidos sedimentables*	ml/L	1,5	1	5
Solidos Suspendidos Totales*	mg/L	92	20,5	90

PARÁMETRO	UNIDAD	PUNTO 1 ENTRADA PTAR	PUNTO 2 SALIDA PTAR SOTARA	LIMITERESOLUCI ÓN 0631 2015
Solidos Suspendidos Volatiles*	mg/L	-	17	NA

Fuente: Reporte de Laboratorio R530509 Chemilab

NOTA:

*AYR: Análisis y Reporte Especificado en la Resolución 631 de 2015

*NA: No Aplica

* Convención Verde: Cumple con los límites máximos permisibles de la Resolución 631 de 2015

Tabla 22. Resultados fisicoquímicos Punto 3 y 4 Rio las Piedras aguar arriba PTAR Sotará y Aguas abajo PTAR Sotará. (Anexo 11).

PARÁMETRO	UNIDAD	PUNTO 3 RIO LAS PIEDRAS AGUAS ARRIBA PTAR SORATA	PUNTO 4 RIO LAS PIEDRAS AGUAS ABAJO PTAR SOTARA
Alcalinidad total*	mg CaCO3/L	37,2	36,2
Coliformes Fecales Termo tolerantes*	NMP/100mL	1287	2029
Coliformes Totales*	NMP/100mL	5794	7270
Conductividad*	μS/cm	80,5	86,9
DBO 12	mg O2/L	<5,00	<5,00
DBO 8	mg O2/L	<5,00	<5,00
DBO5 (Demanda Bioquímica de Oxigeno	mg O2/L	<5,0	<5,0
DBO5 Disuelta (Demanda Bioquímica de Oxígeno Disuelto)	mg O2/L	<5,0	<5,0
DQO Disuelta	mg O2/L	19,98	7,54
DQO*	mg O2/L	34,6	21,6
Dureza Total*	mg CaCO3/L	30,9	33,8
Fósforo total*	mg P/L	0,625	<0,07
Grasas y Aceites*	mg/L	<0,2	<0,2
Nitratos* (Aguas Residuales alta MO)	mg NO3/L	<1,00	<1,00
Nitritos*	mg NO2/L	<0,02	<0,02
Nitrógeno amoniacal (Amonio)*	mg/L NH3-N	<0,054	<0,054
Nitrógeno total Kjeldahl*	mg N/L	<3,00	<3,00
Ortofosfatos* (mg PO4/L) (equivalente a fósforo soluble, fosfato soluble,	mg PO4/L	0,237	<0,21

PARÁMETRO	UNIDAD	PUNTO 3 RIO LAS PIEDRAS AGUAS ARRIBA PTAR SORATA	PUNTO 4 RIO LAS PIEDRAS AGUAS ABAJO PTAR SOTARA
ortofosfato soluble, fósforo reactivo soluble)			
Oxígeno disuelto*	mg O2/L	6,97	6,92
pH *	Unidades de Ph	7,74	7,52
Solidos Suspendidos Totales*	mg/L	<10,0	<10,0
Solidos Suspendidos Totales*	mg/L	<10,0	<10,0
Solidos Suspendidos Volátiles*	mg/L	64	76

Fuente: análisis ambiental y laboratorio Parámetros evaluados por laboratorio de CHEMILAB

4.8.4. Estimación de cargas contaminantes

Las cargas contaminantes se calculan a partir del caudal y las concentraciones obtenidas por el laboratorio, para los parámetros principales de control establecidos decreto 1076 de 2015 y Resolución 631 de 2015.

En la tabla siguiente se registran las cargas contaminantes de los diferentes vertimientos, para ello se toman en cuenta los resultados de laboratorio presentados con anterioridad.

Tabla 23. Cargas contaminantes

PUNTO	CONCENTRACIONES					CA	RGA CON	ITAMINA	NTE	
	CAUDA	DBO5	DQO	SST	GYA	JR	DBO	DQO	SST	GYA
	L (L/S									
Entrada PTAR	2.96	108	238	92	27	24	27.65	60.94	23.56	6.91
vertimiento 1										
Salida PTAR	3.06	41.3	123	20.5	2.88	24	10.93	32.56	5.43	0.76
VERTIMIENTO	0.01	108	238	92	27	24	0.10	0.26	0.09	0.03
BARIO BELEN										

Fuente: Elaboración Propia

Por la representatividad del vertimiento Barrio Belén, se realiza el aforo del vertimiento y se asume las mismas concentraciones del punto de entrada de la PTAR.

4.8.5. Sistema de tratamiento de aguas residuales

4.8.5.1. Remociones

Luego del muestreo compuesto por un periodo de 6 horas en la entrada y la salida, se estiman a continuación las eficiencias del sistema de tratamiento.

Tabla 24. Eficiencias de remoción PTAR Municipal Sotará

PUNTO	EFICIENCIA DE REMOCION						
	DBO	DBO DQO SST GYA					
PTAR SOTARA	60%	47%	77%	89%			

Fuente: Elaboración Propia

Las remociones fueron en su mayoría menores del 80% esperados por la tecnología, sin embargó analizando conforme a la resolución 0631 de 2015, da cumplimiento a cabalidad todos los parámetros monitoreados

4.8.5.2. Índices de calidad

A continuación, teniendo en cuenta los resultados de laboratorio y datos in situ, se realiza el cálculo del índice de calidad (ICA) del agua en los diferentes puntos evaluados, con los seis parámetros respectivo para la metodología ICA propuesto por el IDEAM, en la cual se evalúa la calidad del agua en fuentes superficiales, mediante 6 parámetros como % de Saturación de OD, Sólidos Suspendidos Totales, Demanda Química de Oxígeno, Conductividad Eléctrica, Relación Nitrógeno Total /Fósforo total y pH.

Tabla 25. Parámetros de Laboratorio para los puntos de monitoreo de la fuente hídrica superficial Rio Piedras

PARÁMETROS FISICOQUÍMICOS	PARÁMETROS
	MONITOREADOS

	MN83945	MN83946
DQO	34,6	21,6
SST	10	10
Conductividad(us/cm)	26	30
%saturación de OD	104.68	97.3
Nitrógeno toral	3	3
Fosforo total	0.625	0.07
Relación nitrógeno /fósforo	4.8	42.9
рН	7.59	7.48

Tabla 26. Índices de Calidad ICA IDEAM - Fuente hídrica superficial Rio Piedras Aguas Arriba y Aguas Abajo del Vertimiento.

Parámetros Fisicoquímicos	Puntos de	Puntos de Monitoreo		
	MN83945	MN83946		
I-DQO	0,91	0,91		
I-SST	0,99	0,99		
I-CE	0,96	0,95		
I-OD	0,95	0,97		
I-Nt/Pt	0,15	0,15		
I-pH	1,00	1,00		
Ponderación (6 variables)	0,17	0,17		
ICA- Ideam	0,84	0,85		
Calificación de Calidad del Agua	Aceptable	Aceptable		

Fuente: Elaboración Propia

Tabla 27. Rango de clasificación para la determinación de Calidad del Agua según IDEAM

Calificación de la Calidad del Agua según los valores que tome el ICA				
Categorías de Valores que puede tomar el indicador	Calificación de la calidad del agua	Señal de alerta		
0,00 - 0,25	Muy Mala	Rojo		
0,26 - 0,5	Mala	Naranja		
0,51- 0,7	Regular	Amarillo		
0,71- 0,9	Aceptable	Verde		
0,91- 1	Buena	Azul		

Fuente: Elaboración Propia

Como se logra identificar en la tabla anterior, las condiciones de calidad no se ven afectadas después del vertimiento 1 PTAR del municipio de Sotará. Los valores encontrados varían de 0,84 antes del vertimiento a 0,85 después del vertimiento,

considerando una clasificación de Calidad Aceptable dentro de las fuentes hídricas. La calidad de la fuente hídrica antes del vertimiento igualmente considera como calidad aceptable, esta calificación se pronuncia por la relación Nitrógeno Fósforo que se encontró, debido a que no presenta las concentraciones más óptimas para calificar como fuente hídrica de Buena Calidad. Sin embargo, los valores determinan que el vertimiento actual no presenta una afectación considerable en la clasificación de calidad de la fuente hídrica, Río Piedras.

4.9. PLAN DE MUESTREO DEL MUNICIPIO DE TOTORÓ

Realizar el monitoreo compuesto y puntual de los vertimientos representativo y fuente hídrica superficial de la cabecera municipal de Totoró, con el objetivo de cumplir con las obligaciones dispuesta en el contrato de consultoría 346 de 2017 con EMCASERVICIOS

Tabla 28 Puntos de muestreo se dispondrán los puntos de monitoreo de la siguiente manera

Punto No.	Descripción
Punto 1	Entrada PTAR Barrio Colombia
Punto 2	Salida PTAR Barrio Colombia
Punto 3	Río Cofre Aguas Arriba Vertimiento PTAR Barrio Colombia
Punto 4	Río Cofre Aguas Abajo a 150 metros del Vertimiento PTAR B/ Colombia
Punto 5	Entrada PTAR Las Vueltas
Punto 6	Salidas PTAR Las Vueltas
Punto 7	Río Cofre Aguas Arriba Vertimiento PTAR Las Vueltas
Punto 8	Río Cofre Aguas Abajo a 150 metros del Vertimiento PTAR Las Vueltas

Tabla 29 Equipo de trabajo

Nombre	Nombre
Cargo	Cargo
Oscar Antonio Yanza	Oscar Antonio Yanza
Conductor y Técnico especializado	Conductor y Técnico especializado
Eduar Erazo	Eduar Erazo
Técnico especializado	Técnico especializado
Mauricio Vidal	Mauricio Vidal
Técnico especializado	Técnico especializado

DURACION DE LA JORNADA: 1 día

REQUERIMIENTO DEL LABORATORIO

a. Tarros Plásticos: 4 Litros por Punto

b. Tarros de Vidrio: 1 Litro por Punto

c. Vertimientos: Tarro plástico y Tarro de Vidrio por punto

d. Fuente Hídrica: 1 Tarro Plástico la empresa son de 2 litros por por punto.

Tabla 30 TABLA DE RESPONSABILIDADES

Tabla 30 TABLA DE RESPONSABILIDADES Nombre Cargo				
Nombro	Cargo			
Oscar Antonio Yanza	 Organizar los implementos de monitoreo y calibración de equipos multiparametros EL DIA ANTERIOR. Usar Lista de Chequeo 1. 			
	Notificación de los implementos faltantes a Felipe Yanza para su compra con anticipación.			
	• Logística de Transporte. (Determinar las duraciones de viajes, regreso e inconvenientes en las vías).			
Eduar Erazo	Notificación a los municipios del día de monitoreo OJO			
	Impresión de formatos de Custodio necesarios para cada punto de monitoreo			
	Rotulación de Tarros plásticos y de Vidrio necesarios en el monitoreo. EL DIA ANTERIOR			
	Chequeo Final de los implementos al final de la jornada de monitoreo. (Equipos Multiparametros).			
	• Entrega de todos los elementos de protección personal a cada integrante del equipo de trabajo.			
	Disponer las muestras con la preservación adecuada al laboratorio.			
Mauricio Vidal	Molinete calibrado y en buen estado			
	Equipo multiparametros adicional			
	Chequeo Final de los implementos al final de la jornada de monitoreo. (Molinete).			
Sebastián	Monitoreo de los puntos seleccionados			

Juliana Ordoñez	• Revisión y chequeo de todos los implementos del monitoreo, chequeo de la calibración de los equipos multiparametros y del buen rotulo de los tarros plásticos. EL DIA ANTERIOR		
	Tomar registro fotográfico y georreferenciació de los puntos de monitoreo.		
	Disposición de alícuotas para cada punto de monitoreo		
	Digitalizar los datos de campo en los formatos de custodia		
	Organizar registro fotográfico de las visitas por carpetas de cada vertimiento y municipio.		
	Chequeo Final de los implementos al final de la jornada de monitoreo. (Todos los Implementos)		
	Evaluar el uso adecuado los Elementos de protección personal dispuestos para cada técnico		
Alejandro Yanza	Logística de monitoreo Responsable de Calidad del Monitoreo		
	• Evaluación y determinación de los puntos de calidad de las fuentes hídricas		
	Tomar registro fotográfico y georreferenciación de los puntos de monitoreo		
	Disposición de alícuotas para cada punto de monitoreo		

Tabla 31 IMPLEMENTOS DE MONITOREO (LISTA DE CHEQUEO 1)

Lugar: CABECERA MUNICIPAL DE TOTORO				
Fecha: 25 DE JULIO DE 2018				
Responsable del Chequeo:				
Implemento:	Unidades	Chequeo		
Equipo Multiparametros Calibrado	2			
Molinete Calibrado	2			
Formatos de Custodia (Vertimiento y Fuente hídrica)	6			
Tablas para Escribir	3			
Nevera Grande para disponer las Muestras al final	1			
Nevera Pequeña para conservación parcial durante el monitoreo	1			

Bolsas de Hielo	5	
Caja de Guantes de nitrilo (Garantizar 3 pares para cada persona)	1	
Caja de Tapabocas (Garantizar 2 pares para cada persona)	1	
Dispensador de Alcohol portátil y personal	5	
Trajes de monitoreo	4	
Mascaras de monitoreo	2	
Traje para monitoreo de Fuentes Hídricas	2	
Botas plásticas	2	
Probetas de 1 litro o 1000 mL	4	
Probetas de 250 mL o menor	4	
Tarros Plásticos de 2 Litros	10	
Tarros de Vidrio de 1 Litro (En caso de haber de 500 Ml disponer el doble de cantidad)	3	
Agua Destilada	1	
Beaker	1	
Cronómetros	3	
Metro	1	
Decámetro	1	

4.10. IDENTIFICACIÓN DE PUNTOS DE VERTIMIENTOS TOTORÓ

Evaluando los planos suministrados y actualizados de acuerdo al diagnóstico presentado anteriormente, se identificaron dos (2) únicos vertimientos dentro de la cabecera municipal: el primero y principal corresponde a la salida de la PTAR del sector Las vueltas, que se diseñó para tratar el 70% del caudal generado por la cabecera municipal y el segundo correspondiente a la salida de la PTAR sector Barrio Colombia que se diseñó para tratar el 30% restante del caudal generado.

Tomando en cuenta la evaluación de las redes, se procedió a realizar los monitoreos respectivos de cada entrada y salida de los sistemas de tratamiento de aguas residuales, así como de la fuente receptora río Cofre de acuerdo a los protocolos establecidos por el IDEAM. A continuación, se presenta los puntos monitoreados:

Tabla 32. Puntos de monitoreo Municipio de Totoro

Punto No.	Descripción
Punto 1	Entrada PTAR Barrio Colombia
Punto 2	Salida PTAR Barrio Colombia
Punto 3	Río cofre Aguas Arriba Vertimiento PTAR barrio Colombia
Punto 4	Río cofre Aguas abajo a 150 metros del Vertimiento PTAR B/ Colombia
Punto 5	Entrada PTAR Las Vueltas
Punto 6	Salidas PTAR Las Vueltas
Punto 7	Río cofre Aguas Arriba Vertimiento PTAR Las Vueltas
Punto 8	Río cofre Aguas abajo a 150 metros del Vertimiento PTAR Las Vueltas

Fuente: Elaboración Propia

Se recolectaron alícuotas cada veinte minutos para la muestra representativa y su posterior determinación de indicadores fisicoquímicos en cada uno de los puntos, cuyos resultados determinan las cargas contaminantes y las concentraciones finales descargadas, A continuación, se evidencia la tabla de los sitos de muestreo (ilustración 6)

Imagen 6. Vertimientos Municipales Totoró Punto 1 Entrada PTAR Barrio Colombia

Imagen 7. Vertimientos Municipales Totoró Punto 2 Vertimiento 1 Salida Ptar Barrio Colombia

Imagen 8. Vertimientos Municipales Totoró Punto 3 Río cofre Aguas Arriba Vertimiento PTAR barrio Colombia

Imagen 9. Vertimientos Municipales Totoró Punto 4 Río cofre Aguas abajo a 150 metros del Vertimiento PTAR B/ Colombia

Imagen 10. Vertimientos Municipales Totoró Punto 5 Entrada PTAR Las Vueltas

Imagen 11. Vertimientos Municipales Totoró Punto 6 Salida PTAR Las Vueltas

Imagen 12. Vertimientos Municipales Totoró Punto 7 aguas arriba del vertimiento PTAR Las Vueltas

Fuente: Elaboración Propia

4.10.1. Datos *IN SITU*

Se midieron parámetros durante el monitoreo como: pH (Unidades), Temperatura (°C), Conductividad (us/cm) y Oxígeno Disuelto (mg/L) con sondas multiparamétricas, debidamente verificados y calibrados, para su buen funcionamiento. El caudal (L/s) se determinó volumétricamente (cantidad de volumen (L) en cierta cantidad de tiempo(s)) y por medio de Molinete según la situación lo ameritara, todo según lo establece el Protocolo del IDEAM. En las siguientes tablas se registran los datos de campo obtenidos del monitoreo.

Tabla 33. Datos in situ (Q, Conductividad, pH y Temp), Punto 1 Entrada PTAR Barrio Colombia

Hora	Volumen (L)	Tiempo (s)	Caudal (L/s)	Temp. ºC	pH Unidad	Conductividad µS/cm
MAXIMO	1,55	0,94	2,65	19,10	7,69	570,00
MINIMO	0,900	0,490	1,277	15,400	6,670	201,000
PROMEDIO	1,21	0,72	1,72	16,76	7,17	343,56

Tabla 34. Datos in situ (Q, Conductividad, pH y Temp), Punto 2 Vertimiento 1 Salida PTAR Barrio Colombia

Hora	Volumen (L)	Tiempo (s)	Caudal (L/s)	Temp. ºC	pH Unidad	Conductividad µS/cm
MAXIMO	1,50	1,10	1,83	19,20	7,06	502,00
MINIMO	0,840	0,630	0,944	14,900	6,500	348,000
PROMEDIO	1,18	0,86	1,38	16,69	7,00	412,40

Tabla 35. Aforo con molinete Rio Cofre antes del Vertimiento PTAR Barrio Colombia

Aforo con	Aforo con Molinete - Rio Cofre Fuente Hídrica Receptora Antes de PTAR Barrio Colombia						
Ancho total	6	M					
Sección	Velocidad del Caudal (m/s)	Profundidad (m)	Ancho (m)	Área (m2)	Caudal (m3/s)		
1	0,4	0,3	1,00	0,3	0,12		
2	1,1	0,44	1,00	0,44	0,484		
3	1,4	0,5	1,00	0,5	0,7		
4	1,3	0,7	1,00	0,7	0,91		
5	0,4	0,45	1,00	0,45	0,18		
6	0,2	0,14	1,00	0,14	0,028		
		Caudal	Total (m3/s)	2,422			
			Cauda	I Total (L/s)	2422		

Fuente: Elaboración Propia

Tabla 36. Datos in situ (Q, pH y Temp), Punto 3 aguas arriba Barrio Colombia

Hora	Temp. °C	pH Unidad	Conductividad µS/cm	Oxígeno Disuelto (mg/L)	Caudal L/s
10:30	12,40	7,92	66,33	6,30	2422,00

Fuente: Elaboración Propia

Tabla 37. Datos in situ (Q, pH y Temp), Punto 4 aguas abajo Barrio Colombia.

Hora	Temp. ºC	pH Unidad	Conductividad µS/cm	OD (mg/L)
11:10	12,80	7,94	69,52	5,74

Tabla 38. Datos in situ (Q, Conductividad, pH y Temp), Punto 5 Entrada PTAR las vueltas Totoró

Hora	Volumen (L)	Tiempo (s)	Caudal L/s	Temp. ºC	pH Unidad	Conductividad µS/cm
MAXIMO	4,00	1,98	3,65	18,10	7,52	1010,00
MINIMO	2,000	0,800	1,414	17,010	7,020	451,000
PROMEDIO	2,85	1,21	2,44	17,50	7,24	664,48

Tabla 39. Datos in situ (Q, Conductividad, pH y Temp), Punto 6 Vertimiento 2 Salida PTAR Las Vuelas

Hora	Volumen (L)	Tiempo (s)	Caudal L/s	Temp. ºC	pH Unidad	Conductividad µS/cm
MAXIMO	3,00	1,74	3,90	18,70	7,31	922,00
MINIMO	1,600	0,680	1,429	16,900	6,980	778,000
PROMEDIO	2,60	1,12	2,50	17,77	7,13	841,04

Fuente: Elaboración Propia

Tabla 40. Aforo con molinete Rio Cofre antes del Vertimiento PTAR Las Vueltas

Aforo o	Aforo con Molinete - Rio Cofre Fuente Hídrica Receptora Antes de PTAR Las Vueltas							
Ancho total	4	M						
sección	Velocidad del Caudal (m/s)	Profundidad (m)	Ancho (m)	Área (m2)	Caudal (m3/s)			
1	1,7	0,63	1,00	0,63	1,071			
2	0,8	0,76	1,00	0,76	0,608			
3	0,5	0,77	1,00	0,77	0,385			
4	0,7	0,32	1,00	0,32	0,224			
			Caudal	Total (m3/s)	2,288			
			Cauda	l Total (L/s)	2288			

Fuente: Elaboración Propia

Tabla 41. Datos in situ (Q, pH y Temp), Punto 7 Rio Cofre Aguas Arriba Vertimiento PTAR Las Vueltas

Hora	Temp. ºC	pH Unidad	Conductividad µS/cm	Oxígeno Disuelto (mg/L)	Caudal L/s
12:00	13,10	7,93	75,40	5,72	2288

Tabla 42. Datos in situ (Q, Conductividad, pH y Temp), Punto 8 Rio Cofre Aguas Abajo Vertimiento Las Vueltas

Hora	Temp. ºC	pH Unidad	Conductividad µS/cm	OD (mg/L)
12:20	13,40	7,63	80,06	5,56

4.10.2. Georreferenciación municipio de Totoró

La Georreferenciación pertinente para los dos puntos de muestreo corresponden a:

Tabla 43. Georreferenciación puntos de muestreo Municipio de Totoró

PUNTOS	Georreferenciación (Coordenadas geográficas)				
	N	W	ASNM		
1	2° 30' 47"	76° 24' 1"	2555		
2	2° 30' 48"	76° 24' 2"	2548		
3	2° 30' 48"	76° 24' 1"	2541		
4	2° 30' 48"	76° 24' 5"	2542		
5	2° 30' 41"	76° 24' 32,3"	2513		
6	2° 30' 40"	76° 24' 33"	2503		
7	2° 30' 40"	76° 24' 31"	2500		
8	2° 30' 41"	76° 24' 35'	2498		

Fuente: Elaboración Propia

4.10.3. Resultados de laboratorio Municipio de Totoró

Las muestras recolectadas, se transportaron hasta el Laboratorio acreditado por el IDEAM cumpliendo con las especificaciones en el protocolo del IDEAM, para su análisis correspondiente.

En las siguientes tablas, se presentan los parámetros fisicoquímicos, requeridos por la Resolución 631 de 2015 determinados por el Laboratorio de CHEMILAB

Tabla 44. Resultados fisicoquímicos Punto 1 entrada PTAR Barrio Colombia y Punto 2 salida PTAR Barrio Colombia (anexo 12).

PARÁMETRO	UNIDA	PUNTO 1	PUNTO 2 SALIDA	LIMITERES
	D	ENTRADA PTAR BARRIO COLOMBIA	PTAR BARRIO COLOMBIA	OLUCIÓN 0631 2015
Coliformes Fecales Termotolerantes*	NMP/10 0mL	-	15531000	NA
DBO5 (Demanda Bioquímica de Oxígeno) *	mg O2/L	184	282	90
DBO5 Disuelta (Demanda Bioquímica de Oxigeno Disuelto	mg O2/L	-	136	
Detergentes - Tensoactivos (SAAM)*	mg SAAM /L	-	4,69	AYR
DQO Disuelta	mg O2/L	-	266,82	NA
DQO*	mg O2/L	406	597	180
Dureza Total*	mg CaCO3/ L	-	42,2	NA
Fósforo total	mg P/L	-	2,71	AR
Grasas y Aceites*	mg/L	13,45	45,2	20
Hidrocarburos totales (TPH)*	mg/L	-	11,8	AYR
Nitratos* (Aguas Residuales alta MO)	mg NO3/L	-	4,83	AYR
Nitritos*	mg NO2/L	-	<0,02	AYR
Nitrógeno amoniacal (Amonio	mg/L NH3-N	-	8,11	AYR
Nitrógeno total Kjeldahl	mg N/L	-	34,2	AYR
Ortofosfatos* (mg PO4/L) (equivalente a fósforo soluble, fosfato soluble, ortofosfato soluble, fósforo reactivo soluble)	mg PO4/L	-	2,46	AYR
Oxigeno disuelto	mg O2/L	-	6,27	NA
рН	Unidad es de Ph	6,64	6,33	6 A 9
Solidos sedimentables	ml/L	1,8	2	5
Solidos Suspendidos Totales	mg/L	84	157	90
Solidos Suspendidos	mg/L	-	117	NA

PARÁMETRO	UNIDA D	PUNTO 1 ENTRADA PTAR BARRIO COLOMBIA	PUNTO 2 SALIDA PTAR BARRIO COLOMBIA	LIMITERES OLUCIÓN 0631 2015
Volatiles				

Fuente: Reporte de laboratorio CHEMILAB N° 52897 **Parámetros evaluados por** laboratorio de CHEMILAB

NOTA:

*AYR: Análisis y Reporte Especificado en la Resolución 631 de 2015

*NA: No Aplica

* Convención Verde: Cumple con los límites máximos

*Con Rojo: no cumple

Tabla 45. Resultados fisicoquímicos Punto 3 aguas arriba PTAR Barrio Colombia, punto 4 aguas abajo PTAR Barrio Colombia (anexo 13).

PARÁMETRO	UNIDAD	PUNTO 3 AGUAS ARRIBA PTAR BARRIO COLOMBIA	PUNTO 4 AGUAS ABAJO PTAR BARRIO COLOMBIA
Alcalinidad total*	mg CaCO3/L	19,7	21,7
Coliformes Fecales Termotolerantes*	NMP/100mL	14600	100
Coliformes Totales	NMP/100mL	29500	12100
Conductividad*	μS/cm	76,5	71,8
DBO 12	mg O2/L	<5,00	<5,00
DBO 8	mg O2/L	<5,00	<5,00
DBO5 (Demanda Bioquímica de Oxígeno) *	mg O2/L	<5,0	<5,0
DBO5 Disuelta (Demanda Bioquímica de Oxígeno Disuelto)	mg O2/L	<5,0	<5,0
DQO Disuelta	mg O2/L	<5,00	7,89
DQO*	mg O2/L	<5,00	11
Dureza Total*	mg CaCO3/L	15,9	17,1
Fósforo total*	mg P/L	<0,07	0,076
Grasas y Aceites*	mg/L	<0,2	0,293
Nitratos* (Aguas Residuales alta MO)	mg NO3/L	<1,00	<1,00
Nitritos*	mg NO2/L	<0,02	<0,02
Nitrógeno amoniacal (Amonio)*	mg/L NH3-N	<0,054	0,42
Nitrógeno total Kjeldahl*	mg N/L	<3,00	6,16
Ortofosfatos* (mg PO4/L) (equivalente a fósforo soluble, fosfato soluble, ortofosfato soluble, fósforo reactivo soluble)	mg PO4/L	<0,21	<0,21
Oxigeno disuelto*	mg O2/L	7,33	7,89
рН	Unidades de pH	6,79	7,39
Solidos Suspendidos Totales*	mg/L	11,5	14,5

Solidos Suspendidos Volatiles*	mg/L	11	11,5
Solidos totales*	mg/L	74	82

Fuente: Reporte de Laboratorio CHEMILAB N° 52898 Parámetros evaluados por laboratorio de CHEMILAB

Tabla 46. Resultados fisicoquímicos Punto 5 y Punto 6 Entrada y Salida PTAR Las Vueltas

PARÁMETRO	UNIDAD	PUNTO 5 ENTRADA PTAR LAS VUELTAS	PUNTO 6 SALIDA PTAR LAS VUELTAS	LIMITERESOLU CIÓN 0631 2015
Coliformes fecales termototales	NMP/100 ml	-	1986300	NA NA
DBO5 disuelta (demanda bioquímica de oxigeno)	mg 02/l	434	362	90
DBO5 disuelta (demanda bioquímica de oxígeno disuelto)	mg SAAM/co mo las de peso molecular 288,38 g/mol	-	170	AYR
detergentes- tensoactivos(SAAM)	mg 02/l	-	5,85	AYR
DQO disuelta	mg02/l	-	300,36	NA
DQO	mg caCO3/L	679	543	180
dureza total	mg p/l	-	50,1	NA
fosforo total	mg p/l	-	4,16	AYR
grasas y aceites	mg p/l	19,1	17,1	20
hidrocarburos totales	mgNO3/L	-	3,82	AYR
nitratos (aguas residuales alta MO)	mg NO2 /L	-	2,65	AYR
nitritos	mg/l NH3 -N	-	<0,02	AYR
nitrógeno amoniacal (amonio)	mg N/L	-	21	AYR
nitrógeno total	mg PO4/L	-	51,5	AYR
ortofosfatos (mg PO4/L) (equivale a fosforo soluble, fosfato soluble ortofosfato soluble, fosforo reactivo soluble)	mg O2/L	-	3,59	AYR
oxígeno disuelto	mg O2/L	-	1,09	NA
Ph	Unidades de	6,51	6,96	6 A 9
solidos sedimentables	ml/L	4	2	5
solidos suspendidos totales	mg/L	216	167	90
solidos suspendidos volátiles	mg/L	-	113	NA

Fuente: Reporte de Laboratorio CHEMILAB N° 52899 Parámetros evaluados por laboratorio de CHEMILAB

Nota:

Fuente: Reporte de laboratorio CHEMILAB Nº 52897

*Parámetros evaluados por laboratorio de CHEMILAB

Fuente: Reporte de Laboratorio R530509 Chemilab

*AYR: Análisis y Reporte Especificado en la Resolución 631 de 2015

*NA: No Aplica

* Convención Verde: Cumple con los límites máximos

*Con Rojo: no cumple

4.10.4. Estimación de cargas contaminantes

Las cargas contaminantes se calculan a partir del caudal y las concentraciones obtenidas por el laboratorio para los parámetros principales de control establecidos decreto 1076 de 2015 y Resolución 631 de 2015.

En la tabla siguiente se registran las cargas contaminantes de los diferentes vertimientos, para ellos se toman en cuenta los resultados de laboratorio presentados con anterioridad.

Tabla 47. Cargas Contaminantes de los Vertimientos de Totoró

Punto	Cauda CONCENTRACIONES (mg/l) Caro			argas Contaminantes (Kg/d)						
	I/S	DBO ₅	DQO	SST	GYA	Jr (hr)	DBO ₅	DQO	SST	GYA
Entrada PTAR B/ Colombia	1,72	184,0	406,0	84,0	13,5	24	27,3	60,2	12,5	2,0
Vertimiento 1 Salida PTAR B/Colombia	1,38	282,0	597,0	157,0	45,2	24	33,6	71,1	18,7	5,4
Entrada PTAR Las Vueltas	1,72	184,0	406,0	84,0	13,5	24	27,3	60,2	12,5	2,0

Vertimiento 2	1,38	282,0	597,0	157,0	45,2	24	33,6	71,1	18,7	5,4
Salida PTAR										
Las Vueltas										

4.10.4.1. Remociones

Luego del muestreo compuesto por un período de 6 horas en la entrada y la salida, se estiman a continuación las eficiencias del sistema de tratamiento.

Tabla 48. Eficiencias de remoción PTAR de la Cabecera Municipal de Totoró

Punto	Eficiencia de remoción (%) DBO DQO SST GYA					
PTAR BARRIO COLOMBIA	0%	0%	0%	0%		
PTAR LAS VUELTAS	14%	18%	21%	8%		

Fuente: Elaboración Propia

Los sistemas de tratamiento presentan muy bajas eficiencias, la PTAR B/Colombia arrojó algunos valores negativos y para la PTAR Las vueltas se aprecia que las eficiencias de remoción no alcanzan el 30%; por lo que deberá tomarse medidas técnicas que permitan la optimización de las respectivas plantas

4.10.5. Índices de calidad

El índice de calidad del agua sugerido por el IDEAM para corrientes superficiales, corresponde a una expresión numérica agregada y simplificada surgida de la sumatoria aritmética equiponderada de los valores que se obtienen al medir la concentración de cinco o seis variables fisicoquímicas básicas en las estaciones de monitoreo que hacen parte de la Red Básica de Monitoreo de Calidad de Agua y que evalúan la calidad del agua en las corrientes superficiales.

Tabla 49. Puntos de monitoreo para evaluación de índices de calidad del Rio Cofre

Punto	Referencia	Descripción
Punto 3	MD83690	Aguas Arriba PTAR Barrio Colombia
Punto 4	MD83691	Aguas Abajo a 150m PTAR Barrio

Punto 7	MD83694	Aguas Arriba PTAR Las Vueltas				
Punto 8	MD83695	Aguas Abajo a 150m PTAR Las				

Tabla 50 . Parámetros de Laboratorio para los puntos de monitoreo de la fuente hídrica superficial

Parámetros	Puntos de Monitoreo						
Fisicoquímicos	MD83690 PTAR barrio Colombia	MD83691	MD83694 PTAR las vueltas	MD83695			
DQO	<55	1	31,8	27,4			
SST	11,5	14,5	12,5	13			
Conductividad (us/cm)	76,5	71,8	80,5	83,1			
% Saturación de OD	81	74,46	74,29	72,68			
Nitrógeno Total	3,81	7,07	3,81	5,39			
Fosforo Total	0,07	0,076	0,07	0,108			
Relación Nitrógeno/Fosforo	54,4	93,0	54,4	49,9			
Ph	7,92	7,94	7,93	7,63			

Fuente: Elaboración Propia

Tabla 51. Índices de Calidad ICA IDEAM - Fuente hídrica superficial Rio Cofre Aguas Arriba y Aguas Abajo de Vertimientos.

Parámetros Fisicoquímicos	Puntos de Monitoreo						
Farametros Fisicoquimicos	MD83690	MD83691	MD8369	MD83695			
I-DQO	0,91	0,9	0,51	0,5			
I-SST	0,99	0,9	0,98	0,9			
I-CE	0,82	0,8	0,80	0,7			
I-OD	0,81	0,7	0,74	0,7			
I-Nt/Pt	0,15	0,1	0,15	0,1			
I-pH	1,00	1,0	1,00	1,0			
Ponderación (6 variables)	0,17	0,1	0,17	0,1			
ICA- Ideam	0,79	0,7	0,71	0,7			
Calificación de Calidad del Agua	Aceptable	Aceptable	Aceptabl e	Aceptable			

Fuente: Elaboración Propia

Tabla 52. Rango de clasificación para la determinación de Calidad del Agua según IDEAM

Calificación de la Calidad del Agua según los valores que tome el ICA						
Categorías de Valores que puede tomar el	Calificación de la calidad del	Señal de alerta				
0,00 - 0,25	Muy Mala	Rojo				
0,26 - 0,5	Mala	Naranja				
0,51- 0,7	Regular	Amarillo				
0,71- 0,9	Aceptable	Verde				
0,91- 1	Buena	Azul				

Como se logra identificar en la tabla anterior donde se disponen los valores del índice de calidad del agua dispuesto por la metodología del IDEAM, el Rio Cofre no cambia su rango de calidad disponiendo en todos los puntos evaluados como Condición "Aceptable", y aunque los valores de calificación varían en 7 puntos después de la descarga del vertimiento 1, la fuente hídrica se mantiene estable en su categorización. Según la determinación del índice de calidad la fuente hídrica mantiene estable las condiciones iniciales después de los vertimientos respectivos. La determinación de calidad más baja resulta a la relación nitrógeno fósforo, considerando que las concentraciones encontradas antes y después de los vertimientos que presentan valores no aceptables para una fuente hídrica limpia.

4.11. OBJETIVO 3 APOYO EN EL ANÁLISIS, PARA PERMITIR LA REALIZACIÓN DE OBJETIVOS DE CALIDAD, PROGRAMAS, PROYECTOS Y METAS DEL PLAN DE SANEAMIENTO Y MANEJO DE VERTIMIENTOS, (PSMV) PARA LOS MUNICIPIOS DE SOTARÁ Y TOTORÓ CAUCA

4.11.1. Objetivos de calidad y metas de reducción de cargas contaminantes

Actualmente la Corporación Autónoma Regional del Cauca CRC, cuenta con un acuerdo de metas globales de reducción de cargas contaminantes y objetivos de calidad de las fuentes hídricas superficiales receptoras de las cabecera municipales del Cauca, sin embargo, evaluando las consideraciones dispuestas en el acuerdo 015 de 2014 para el municipio de Sotará, se determina que las metas dispuestas están por encima de las cargas representativas del Municipio actualmente, y no rigen al cumplimiento de la Resolución 631 de 2015. Así mismo,

de acuerdo al acta realizada en las instalaciones de la Corporación Autónoma Regional del Cauca, se determinó que las metas se dispondrán de acuerdo a lo propuesto en el Plan de Saneamiento y Manejo de Vertimientos PSMV, por lo cual se presentan a continuación los objetivos de calidad definidos por la Evaluación ambiental de Vertimiento y las metas de cargas contaminantes dispuestas por el método de proyecciones definido anteriormente.

4.11.2. Objetivos de calidad de la fuente receptora

Como se mencionó anteriormente, los objetivos de calidad están sustentados en la modelación de calidad realizada por la consultoría, evaluando las condiciones más críticas dispuestas y representando el comportamiento de la fuente hídrica superficial Rio Las Piedras

Tabla 53. Proyección objetivos de calidad a mediana y largo plazo

OBJETIVO	S	2 AÑOS	5 AÑOS	10 AÑOS
Río o cue	rpo receptor I	No:		
Rio Las Pi	edras			
Meta de (mg/l)	calidad D	BO < 5,0 mg	/L < 5,5 mg/L	< 6,0 mg/L
Meta de (mg/l)	calidad S	ST < 50 mg/	/L < 50 mg/L	< 50 mg/L
Meta de (mg/l)	calidad C	.D. > 5,0 mg	/L > 5,5 mg/L	> 5,5 mg/L

Fuente: Elaboración Propia

4.11.3. Metas de cargas contaminantes

Tomando en cuenta el análisis realizado en los ítems anteriores con respecto a las proyecciones de las cargas contaminantes, asumiendo el método representativo como método para proyecciones de cargas, a continuación, se presentan las metas de Cargas Contaminantes:

Tabla 54. Meta individual de Cargas contaminantes descargadas en Rio Las Piedras – Vertimiento1

META INDIVIDUAL DE CARGAS CONTAMINANTES SOTARA VERTIMIENTO 1 PTAR / PSMV 2018											
Subcuenca	Fuente		Tramo	Carga	Línea	Carga	Línea	Carga	Línea	Carga	Línea
	Receptora de AR		•		Proyectada 2020		Proyectada 2023		Proyectada 2028		
				(kg/	año)	(kg/	año)	(kg/a	año)	(kg/	año)
				DBO ₅	SST	DBO ₅	SST	DBO ₅	SST	DBO ₅	SST
RIO	RIO	LAS	Urbano	11509	3425	8589	8620	8805	8480	10092	9720
QUILCACE	PIEDRA	AS									

Fuente: Elaboración Propia

Tabla 55. Meta individual de Cargas contaminantes descargadas a la Quebrada Aguas Amarillas – Vertimiento 2

META INDIVIDUAL DE CARGAS CONTAMINANTES SOTARA VERTIMIENTO 2 BARRIO BELEN / PSMV 2018									
Microcuenca	Fuente	Carga	Línea	Carga	Línea	Carga	Línea	Carga	Línea
	Receptora	base 2	base 2018 Proyectada 2020		Proyectada 2023		Proyectada		
	de AR							2028	
		(kg/año)		(kg/año)		(kg/año)		(kg/año)	
		DBO ₅	SST	DBO ₅	SST	DBO ₅	SST	DBO ₅	SST
RIO LAS	Quebrada	273	237	294	255	327	284	274	238
PIEDRAS	Aguas								
	Amarillas								

4.11.4. Programas y Proyectos

4.11.4.1 Objetivo General

Realizar planes y acciones, para el manejo adecuado de los vertimientos líquidos, para contribuir a la sostenibilidad del desarrollo del Municipio de Sotará, mediante la construcción de una visión de futuro y la implementación de acuerdos comunes, entre actores sociales y entidades del Estado, con el fin de mejorar la calidad de vida y las condiciones ambientales locales.

4.11.4.2 Objetivo Específicos

- Dinamizar la coordinación entre actores sociales e institucionales del Estado en la gestión sectorial, comunal y nacional del desarrollo, para fortalecimiento del sistema nacional ambiental, la consecución de sus objetivos y la puesta en marcha de los principios ambientales constitucionales
- Mantener e incrementar la capacidad de oferta ambiental del deterioro, la producción de bienes y servicio ambientales y la conservación de la biodiversidad, mediante la protección y uso sostenible de los ecosistemas

El plan de acción estará integrado por un conjunto de programas y proyectos, destinados a dar cumplimiento al objetivo general y los objetivos específicos.

Se han identificado dos (2) tipos de programas. Un programa que está orientado a brindar las herramientas necesarias para una adecuada administración, operación y mantenimiento de los sistemas de recolección, transporte, tratamiento y disposición final de los vertimientos líquidos, programa que se identifica como Desarrollo Institucional. El otro programa es el que tiene que ver con el diseño, construcción, operación y mantenimiento de la infraestructura necesaria para la

recolección, transporte, tratamiento y disposición final de los vertimientos líquidos, programa que se identifica como Desarrollo de la Infraestructura.

4.11.4.3 PROGRAMA DE DESARROLLO INSTITUCIONAL

Para dar cumplimiento a este programa, se plantea la realización de los siguientes proyectos:

4.11.4.4 Proyectos de Asistencias Técnicas

Para el fortalecimiento de los dirigentes sobre el manejo de los vertimientos líquidos, adquiriendo conocimientos sobre las diferentes tecnologías en la recolección, transporte, tratamiento y disposición final de los vertimientos líquidos.

Periodo de proyección: Durante todo el plazo de ejecución del Plan desde el 2019 (corto, mediano y largo plazo).

4.11.4.5 Proyecto De Formación De Técnicos

Se crea la necesidad de la formación de personas o técnicos con el fin de la operación y mantenimiento de la Planta de Tratamiento de Aguas Residuales y del sistema de Alcantarillado para que estas operen sin ninguna dificultad las 24 horas al día, así mismo como actividades de mantenimiento básico.

4.11.4.6 Período de proyección:

A partir del 2019 para formación en operación y mantenimiento de la PTAR y desde el 2020 para capacitaciones generales de mantenimiento al sistema de alcantarillado, con repetición anual (Corto, mediano y largo plazo).

4.11.4.7 PROGRAMA DE DESARROLLO DE LA INFRAESTRUCTURA

Para dar cumplimiento a este programa, se plantea la realización de los siguientes

proyectos:

4.11.4.8 Proyecto De Reposición De Redes

De acuerdo a los datos suministrados por la APC, la Secretaría de Planeación y el

Plan Maestro de Alcantarillado, existe tubería que necesita reposición, debido a su

tiempo de instalación y material de tubería, la cual está generando un aporte

adicional por infiltración de manera considerable las remociones en el Sistema de

Tratamiento de Aguas Residuales, por lo cual se debe disponer un proyecto de

reposición de redes de alcantarillado y mantenimiento de Cámaras de Inspección

existentes. Debido a las consideraciones presupuestales dispuestas en el

municipio, las reposiciones se dispondrán a mediano y largo plazo de manera

progresiva con el objetivo de completar un 100% de las redes necesarias de

mantenimiento. Se proyecta la reposición de 547 ML a mediano plazo iniciando

desde el 2021 y 814 ML a largo plazo. La disposición de los tramos proyectados

se dispone en el cronograma de trabajo.

Período de proyección: Desde el 2017, Corto, Mediano y Largo Plazo

4.11.4.9 Proyecto De Operación y Mantenimiento del Sistema de

tratamiento de Aguas Residuales E Inspección y Mantenimiento del

Sistema de Alcantarillado

Con el objetivo de mantener el sistema de tratamiento de aguas residuales

existente en las mejores condiciones, se proyecta disponer dentro del PSMV el

99

proyecto de operación y mantenimiento de la PTAR, éste comprende las actividades básicas de operación como, control de caudal de entradas y salida; inspección y limpieza de la cámara de cribado; limpieza de la estructura de distribución; inspección del tanque séptico; inspección de natas y lodos; extracción de natas y lodos; inspección del filtro anaerobio; inspección de lodos en el lecho de secados; mantenimiento total del tanque séptico; mantenimiento total del filtro anaerobio y poda de material vegetal en el predio de la PTAR.

Así mismo, se dispone la inspección y mantenimiento del sistema de alcantarillado, actualmente el municipio reporta que los mantenimientos se realizan en épocas de invierno, con el objetivo de preservar el buen funcionamiento de las redes, sin embargo, su mantenimiento está atado a la inspección permanente del operario.

Período de proyección: Desde el 2019, Corto, mediano y Largo Plazo

4.11.4.10 Proyecto de Saneamiento Básico del Vertimiento Barrio Belén

De acuerdo a la evaluación del sistema de alcantarillado, se identificó el vertimiento 2, Barrio Belén, el cual es representativo de la generación de aguas residuales de 5 viviendas. Este vertimiento no es posible conectar a la red principal más cercana, debido a las cotas que representa el terreno, están por debajo de las cotas evaluadas en la red principal, por lo cual se debe realizar la solución individual de saneamiento de dicho vertimiento. La solución consta de dos fases; la primera fase 68 corresponde a la realización de un estudio, con el objetivo de identificar, si es posible la conexión por alcantarillado a un punto de la red principal y con esto, el tratamiento se daría en el sistema existente, la segunda fase queda sujeta a los resultados del estudio realizado, en caso de no ser viable, se evalúa la opción de realizar la solución de saneamiento, mediante la construcción de un Tanque séptico, que permita remover los aportes evaluados en las proyecciones de cargas contaminantes adoptadas, debido a que el predio proyectado no es del municipio, dentro del proyecto se evalúa la

compra del mismo y la legalización del vertimiento. Debido a que el vertimiento no representa una gran afectación por su magnitud y evaluadas las condiciones presupuestales del municipio, se dispone la solución de saneamiento a largo plazo.

4.11.4.11 Estructuración del Plan

Tabla 56 programas y proyectos dispuestos para el cumplimiento del PSMV

PROGRAMAS	PROYECTOS
· Desarrollo institucional	1 Proyecto de asistencia técnica
	2 Proyecto de formación de técnicos
- Desarrollo de la Infra estructura	1 Proyecto de reposición de redes
	2 Proyecto de operación y mantenimiento del
	sistema de tratamiento de aguas residuales e
	inspección y mantenimiento del sistema de
	alcantarillado
	3 Proyecto de saneamiento básico del vertimiento
	Barrio Belén

Fuente: Elaboración Propia

4.11.4.12 Cronograma de Actividades

Tabla 57 Cronograma de ejecución de programas institucionales y de desarrollo en la infraestructura

PROGRAMAS DE DESARROLLO INTITUCIONAL								
PROYECTO	2018	2019	2020	2021	2022	2023	2024	2025 - 2028
Proyecto de		X	Х	Х	Χ	Х	Х	Х
Asistencias técnicas.								
Proyecto de Formación		Х	Х	Х	Х	X	Х	X
de técnicos								
PF	ROGRAM	IAS DE D	DESARR	OLLO DE L	A INFRA	ESTRUCTU	IRA	
				Х	Х	Х	Х	Х
Proyecto Operación y		Х	Х	Х	Х	Х	Х	Х
Mantenimiento								
PTAR								

Proyecto de				X
Saneamiento Básico				
Vertimiento Barrio				
Belén				

FUENTE: elaboración propia

Tabla 58 cronograma de actividades de Desarrollo Institucional

Tabla 36 cronograma de activi	dades de Desarro	no manacional					
Actividad	Año	Responsable					
Proyecto de asistencia técnica							
Capacitación de operarios : diferentes tecnologías en la	2019 - 2028	Empresa de acueducto y					
recolección, transporte, tratamiento y disposición final de los vertimientos líquidos	2010 2020	alcantarillado					
Proyecto de Formacio	Proyecto de Formación de técnicos						
técnicos con el fin de la operación y mantenimiento de la Planta de Tratamiento de Aguas Residuales y del sistema de Alcantarillado	2019 - 2028	Empresa de acueducto y alcantarillado					

Tabla 59 cronograma de actividades del provecto de desarrollo de infraestructura y responsable

labla 59 cronograma de actividades del proyecto de desarrollo de intraestructura y responsable						
ACTIVIDAD	AÑO	RESPONSABLE				
Proyecto de Reposic	ión de Redes					
Reposición de Red Local Sector Alcaldía CAM26A- CAM29 = 174,5 ML	2021	La alcaldía Municipal de Sotara				
Reposición de Red Local Sector Alcaldía CAM29- CAM34 = 194,1 ML	2023	La alcaldía Municipal de Sotara				
Reposición de Red Local Sector Coliseo CAM4A-CAM2 = 178,9 ML	2024	La alcaldía Municipal de Sotara				
Reposición de Red Local Sector Coliseo CAM2-RO = 87,29 ML	2024	La alcaldía Municipal de Sotara				
Reposición de Colector en Carrera 2da CAJAC - CAM18 = 56,86 ML	2025	La alcaldía Municipal de Sotara				
Reposición de Colector en Carrera 2da CAM23-CAJAC = 124,3 ML	2025	La alcaldía Municipal de Sotara				
Reposición de Colector en Carrera 2da CAJA4-CAM23 = 38,07 ML	2026	La alcaldía Municipal de Sotara				
Reposición de Red Local en Carrera 2da CAM21-CAJA4 = 52,73 ML	2026	La alcaldía Municipal de Sotara				
Reposición de Red Local Sector Parque CAM7-CAM45 = 73,97 ML	2026	La alcaldía Municipal de Sotara				
Proyecto de Operación y Mantenimiento del Sistema de tratamiento de Aguas Residuales E Inspección y Mantenimiento del Sistema de Alcantarillado						
Control de caudal de entrada y salida	2019 - 2028	Empresa de acueducto y				

		alcantarillado
Inspección y limpieza de la cámara de cribado	2019 - 2028	Empresa de acueducto y alcantarillado
Limpieza de la estructura de distribución	2019 - 2028	Empresa de acueducto y alcantarillado
Inspección del tanque séptico	2019 - 2028	Empresa de acueducto y alcantarillado
inspección de natas y lodos	2019 - 2028	Empresa de acueducto y alcantarillado
Extracción de natas y lodos	2019 - 2028	Empresa de acueducto y alcantarillado
Inspección del filtro anaeróbico	2019 - 2028	Empresa de acueducto y alcantarillado
Inspección de lodos en el lecho	2019 - 2028	Empresa de acueducto y alcantarillado
Mantenimiento total del tanque séptico	2019 - 2028	Empresa de acueducto y alcantarillado
Mantenimiento total del filtro anaeróbico	2019 - 2028	Empresa de acueducto y alcantarillado
Poda de material vegetal en el predio de la PTAR	2019 - 2028	Empresa de acueducto y alcantarillado
Proyecto de Saneamiento Básico d	del Vertimiento	Barrio Belén
Estudios y Diseños	2027 - 2028	La alcaldía Municipal de Sotara
Etapa Contractual	2027 - 2028	La alcaldía Municipal de Sotara
Etapa de Construcción.	2027 - 2028	La alcaldía Municipal de Sotara
Arranque y Puesta en Operación	2027 - 2028	La alcaldía Municipal de Sotara
Seguimiento y Monitoreo	2027 - 2028	La alcaldía Municipal de Sotara

4.11.4.13 Indicadores de seguimiento

A continuación se establecen los indicadores respectivos de acuerdo a los programas proyectados para el cumplimiento de las metas establecidas que se determinarán de forma anual por cada año de implementación del PSMV:

• Programa de desarrollo institucional

✓ Indicador de Asistencias Técnicas

IAT = Talleres con directivos realizados / Talleres proyectados

✓ Indicador de Formación De Técnicos

IFT=Capacitaciones realizadas / capacitaciones programadas

• Programa de desarrollo de la infraestructura

✓ Indicador de Reposición de Redes

IRA=ML remplazados / ML proyectados a reponer

✓ Indicador de Operación y Mantenimiento del Sistema de tratamiento de Aguas Residuales

 $\mathit{IMP}=No.\ de\ actividades\ realizadas\ en\ la\ PTAR\ /\ No.\ de\ actividades\ programadas\ en\ la\ PTAR$

✓ Indicador de Inspección y Mantenimiento del Sistema de Alcantarillado

IMA=No. de actividades realizadas en el alcantarillado / No. de actividades programadas en el alcantarillado

✓ Indicador de saneamiento básico del Vertimiento del Barrio Belén

Opción 1: Construcción de colector para conexión a red de alcantarillado existente.

 $\mathit{Ive} = \mathit{Vertimientos}\ \mathit{puntuales}\ \mathit{eliminados}\ /\ \mathit{Vertimientos}\ \mathit{puntuales}\ \mathit{a}\ \mathit{eliminar}\ \mathit{proyectados}$

Opción 2: Construcción del sistema de tratamiento para el Barrio Belén.

Ist=Sistemas de tratamiento ejecutados / Sistemas de tratamiento proyectados

4.11.4.14 Presupuesto

Tabla 60 Presupuesto de Actividades de Desarrollo Institucional y Desarrollo de Infraestructura

Programa de Desarrollo Institucional							
Actividad	Año	Valor					
Proyecto de Asistencias técnicas.	2019 – 2028	\$ 18.000.000					
Proyecto de Formación de técnicos.	2019 - 2028	\$ 48.000.000					
Programa de desarrollo institucional							
Programa de Desarrollo de Infraestructura							
Proyecto Reposición de redes	2019 - 2028	\$900.000.000					

Proyecto de Operación y Mantenimiento del Sistema de tratamiento de Aguas Residuales E Inspección y Mantenimiento del Sistema de Alcantarillado	2019 - 2028	\$70.000.000
Proyecto de Saneamiento Básico del Vertimiento Barrio Belén	2028	\$48.000.000

FUENTE: elaboración propia

4.12. OBJETIVOS DE CALIDAD Y METAS DE REDUCCIÓN DE CARGAS CONTAMINANTES TOTORÓ

Actualmente, la Corporación Autónoma Regional del Cauca CRC, cuenta con un acuerdo de metas globales, reducción de cargas contaminantes y objetivos de calidad de las fuentes hídricas superficiales receptoras de la cabecera municipal del Cauca, sin embargo, evaluando las consideraciones dispuestas en el acuerdo 015 de 2014 para el municipio de Totoró, se determina que las metas dispuestas están por encima de las cargas representativas del municipio actualmente.

Así mismo, de acuerdo al acta realizada en las instalaciones de la Corporación Autónoma Regional del Cauca, se determinó que las metas se dispondrán de acuerdo a lo propuesto en el Plan de Saneamiento y Manejo de Vertimientos PSMV, por lo cual se presentan a continuación los objetivos de calidad definidos por la evaluación ambiental de vertimiento y las metas de cargas contaminantes dispuestas por el método de proyecciones definido anteriormente.

4.12.1. Objetivos de calidad de la fuente receptora

Como se mencionó anteriormente, los objetivos de calidad están sustentados en la modelación de calidad realizada por la consultoría, evaluando las condiciones más críticas dispuestas y representando el comportamiento de la fuente hídrica superficial del Rio Cofre.

Tabla 61. Objetivos de calidad a Corto, Mediano y Largo Plazo Río Cofre

OBJETIVOS	2 AÑOS	5 AÑOS	10 AÑOS
Río o cuerpo receptor No: Río Las Cofre			
Meta de calidad DBO (mg/l)	< 1,8mg/L	< 1,8 mg/L	< 1,8 mg/L
Meta de calidad SST (mg/l)	< 20 mg/L	< 20 mg/L	< 20 mg/L
Meta de calidad O.D. (mg/l)	> 5,8 mg/L	> 5,8 mg/L	> 5,8 mg/L

Fuente: Documento PSMV

4.12.2. Metas de cargas contaminantes

Tomando en cuenta el análisis realizado en los ítems anteriores con respecto a las proyecciones de las cargas contaminantes, asumiendo el método representativo como método para proyecciones de cargas, a continuación, se presentan las metas de Cargas Contaminantes:

Tabla 62. Meta individual de Cargas contaminantes descargadas del Vertimiento1 PTAR Barrio Colombia en el Río Cofre

META INDIVIDUAL DE CARGAS CONTAMINANTES TOTORO VERTIMIENTO 1 PTAR BARRIO COLOMBIA /									
PSMV 2018									
Subcuenc	Fuente	Tramo	Carga Línea	Carga Línea	Carga Línea	Carga Línea			
а	Receptora		base 2018	Proyectada	Proyectada	Proyectada			

META INDI\ PSMV 2018	/IDUAL DE C	ARGAS CC	NTAMINA	NTES TO	toro ve	RTIMIEN	ITO 1 PT <i>F</i>	AR BARR	O COLON	MBIA /
	de AR				20	20	20	23	20	28
			(kg/año)		(kg/año)		(kg/año)		(kg/año)	
			DBO ₅	SST	DBO ₅	SST	DBO ₅	SST	DBO ₅	SST
RÍO PALACE	RÍO COFRE	Urbano	13324	9024	9769	6616	10236	6994	10587	7170

Fuente: Documento PSMV

Tabla 63. Meta individual de Cargas contaminantes descargadas Vertimiento 2 PTAR Las Vueltas en el Rio Cofre

META INDIVIDUAL DE CARGAS CONTAMINANTES TOTORO VERTIMIENTO 2 PTAR LAS VUELTAS /										
PSMV 2018										
Microcuenca	Fuente Carga Línea base Carga Línea		Carga Línea		Carga Línea					
	Receptor	2018		Proyecta	Proyectada 2020 P		Proyectada 2023		Proyectada	
	a de AR						2028			
		(kg/año)		(kg/a	(kg/año) (kg/año)		año)	(kg/año)		
		DBO ₅	SST	DBO ₅	SST	DBO ₅	SST	DBO₅	SST	
RIO	Rio Cofre	DBO ₅ 28875	SST 17965	DBO ₅ 25188	SST 17060	DBO ₅ 27313	SST 18499	DBO ₅ 29167	SST 1975	
RIO PALACE	Rio Cofre			- 0		- 0		- •		

Fuente: Documento PSMV

Tabla 64 Meta TOTAL individual de Cargas contaminantes descargadas en el Río Cofre / Cabecera Municipal de Totoró PSMV 2018

META INDIVIDUAL DE CARGAS CONTAMINANTES TOTALES TOTORO RIO COFRE / PSMV 2018										
Microcuenca	Fuente	Carga Línea base		nte Carga Línea base Carga Línea		Carga Línea		Carga Línea		
	Receptor	2018 Pro		Proyecta	ada 2020	020 Proyectada 202		Proyectada		
	a de AR							2028		
		(kg/año)		(kg/año)		(kg/año)		(kg/año)		
		DBO ₅	SST	DBO ₅	SST	DBO ₅	SST	DBO ₅	SST	
RIO	Rio Cofre	42199	26989	34957	23676	37639	25493	39754	26925	
PALACE										

4.12.3. Programas y proyectos

4.12.3.1 Objetivo General

Realizar planes y acciones, para el manejo adecuado de los vertimientos líquidos, para contribuir a la sostenibilidad del municipio de Totoró, mediante la construcción de acuerdos comunes entre lo social y el Estado, con el fin de mejorar las condiciones de vida y las condiciones ambientales.

4.12.3.2 Objetivo Específico

- Dinamizar la coordinación entre actores sociales e institucionales del Estado, en la gestión sectorial, comunal y nacional de desarrollo para la puesta en marcha de los principios ambientales.
- Mantener e incrementar la capacidad de oferte ambiental del deterioro, la producción de bienes y servicios medioambientales.

El plan de acción o plan operativo es el desglose de las actividades a desarrollar para alcanzar los objetivos específicos, este plan contiene las actividades a realizar, los responsables de la realización, los recursos necesarios, las fuentes de financiamiento, los indicadores de seguimiento y tiempo de ejecución

El plan de acción estará integrado por un conjunto de programas y proyectos, destinados a dar cumplimiento al objetivo general y los objetivos específicos.

Se han identificado dos (2) tipos de programas. Un programa que está orientado a brindar las herramientas necesarias para una adecuada administración, operación y mantenimiento de los sistemas de recolección, transporte, tratamiento y disposición final de los vertimientos líquidos, programa que se identifica como Desarrollo Institucional. El otro programa es el que tiene que ver con el diseño,

construcción, operación y mantenimiento de la infraestructura necesaria para la recolección, transporte, tratamiento y disposición final de los vertimientos líquidos, programa que se identifica como Desarrollo de la Infraestructura.

4.12.3.3 Programa de Desarrollo Institucional

Para dar cumplimiento a este programa, se plantea la realización de los siguientes proyectos:

4.12.3.4 Proyectos de Asistencias Técnicas

Para el fortalecimiento de los dirigentes sobre el manejo de los vertimientos líquidos, adquiriendo conocimientos sobre las diferentes tecnologías en la recolección, transporte, tratamiento y disposición final de los vertimientos líquidos.

Período de proyección: durante todo el plazo de ejecución del plan desde el 2019 (corto, mediano y largo plazo).

4.12.3.5 Proyecto De Formación De Técnicos

Se crea la necesidad de la formación de personas o técnico, con el fin de la operación y mantenimiento de la Planta de Tratamiento de Aguas Residuales y del sistema de Alcantarillado para que estas operen sin ninguna dificultad las 24 horas del día, así mismo como actividades de mantenimiento básico.

• Período de proyección:

A partir del 2019 para formación en operación y mantenimiento de la PTAR y

desde el 2020 para capacitaciones generales de mantenimiento al sistema de

alcantarillado, con repetición anual (corto, mediano y largo plazo).

4.12.3.6 Programa de desarrollo de la infraestructura

Para dar cumplimiento a este programa, se plantea la realización de los siguientes

proyectos:

4.12.3.7 Proyecto de Reposición de Redes de Alcantarillado

De acuerdo a los datos suministrados por la APC, Secretaría de Planeación y el

Plan Maestro de Alcantarillado, existe tubería que necesita reposición, debido a su

mal funcionamiento, esto está afectando la comunidad aledaña, por sus malos

olores y rebosamiento, por lo que requiere de un proyecto de reposición de redes

de alcantarillado. De acuerdo a las recomendaciones dispuesta por la alcaldía

municipal, las reposiciones se darán a mediano plazo, debido a que priorizarán la

optimización de los sistemas de tratamiento existentes. Se proyecta la reposición

de 209 ML a mediano plazo, iniciando desde el 2021. La disposición de los tramos

proyectados se dispone en el cronograma de trabajo

Periodo de proyección: desde el 2021, Corto, Mediano y Largo Plazo

4.12.3.8 Proyecto de Ampliación de Redes de Alcantarillado

Se trata de la ejecución de proyectos para ampliar la cobertura general del

sistema de alcantarillado. Por lo cual solo se indica la ampliación necesaria para

la conexión de sectores nuevos y preservar la unificación de vertimientos

110

existente. La ampliación de redes se proyecta a corto y mediano plazo. A corto

plazo se proyecta la ampliación de 140 ML y la de 61,76 ML a mediano plazo.

Período de proyección: desde el 2020 a (Corto Plazo), hasta el 2023

(Mediano Plazo).

4.12.3.9 Proyecto De Operación y Mantenimiento del Sistema de

tratamiento de Aguas Residuales E Inspección y Mantenimiento

del Sistema de Alcantarillado

Con el objetivo de mantener el sistema de tratamiento de aguas residuales

existente en las mejores condiciones, se proyecta disponer dentro del PSMV el

proyecto de operación y mantenimiento de la PTAR, ésta comprende las

actividades básicas de operación como: control de caudal de entradas y salida;

inspección y limpieza de la cámara de cribado; limpieza de la estructura de

distribución; inspección del tanque séptico; inspección de natas y lodos; extracción

de natas y lodos; inspección del filtro anaerobio; inspección de lodos en el lecho

de secados; mantenimiento total del tanque séptico; mantenimiento total del filtro

anaerobio y poda de material vegetal en el predio de la PTAR.

Así mismo, se dispone la inspección y mantenimiento del sistema de

alcantarillado, actualmente el municipio reporta que los mantenimientos se

realizan en épocas de invierno con el objetivo de preservar el buen funcionamiento

de las redes, sin embargó, su mantenimiento está atado a la inspección

permanente del operario.

Período de proyección: Desde el 2019, Corto, Mediano y Largo Plazo

111

4.12.3.10 Proyecto de Optimización del Sistema de Tratamiento de Aguas Residuales Barrio Colombia

De acuerdo a la evaluación técnica del sistema de tratamiento de aguas residuales, se identificó que la PTAR Barrio Colombia, no presenta remociones acordes a la tecnología implementada, por lo cual se proyecta una optimización que genere y mantenga las remociones necesarias para dar cumplimiento a los objetivos de calidad, dispuestos en el documento y las metas de cargas contaminantes descargadas. Dentro de la optimización se proyecta la corrección de la cámara de distribución de caudales, cambio a tapas de lámina, cambio al lecho filtrante (rosetones plásticos), evacuación de lodos, instalación de 4 válvulas de evacuación de lodos y disposición del techo del lecho de secado de lodos. La optimización del sistema de tratamiento de aguas residuales se dispone a corto plazo. Así mismo se incluye la actividad de seguimiento y monitoreo de la PTAR durante todo el horizonte del PSMV, presentando una frecuencia anual, 4 puntos de monitoreo, entrada PTAR, salida PTAR, antes y después del vertimiento y todos los parámetros exigidos por la resolución 631 de 2015 para el vertimiento únicamente.

Período de proyección: desde el 2019, y Largo Plazo

4.12.3.11 Proyecto de Optimización del Sistema de Tratamiento de Aguas Residuales Las Vueltas

De acuerdo a la evaluación técnica del sistema de tratamiento de aguas residuales, se identificó que la PTAR Las Vueltas, no presenta remociones acordes a la tecnología implementada y es la planta de tratamiento de aguas residuales con mayor cobertura en el área tributaria, por lo cual se proyecta una optimización que genere y mantengas las remociones necesarias para dar cumplimiento a los objetivos de calidad dispuestos en el documento y las metas de cargas contaminantes descargadas. Dentro de la optimización se incluye

cambio de tapas de concreto a láminas, habilitación del filtro anaerobio de flujo ascendente, disposición de rosetones plásticos como medio filtrante

Período de proyección: desde el 2019, Corto Plazo, Mediano y Largo Plazo

4.12.3.12 ESTRUCTURACION DEL PLAN

Tabla 65 Programas y proyectos dispuestos en el PSMV del municipio de Totoró

PROGRAMAS	PROYECTOS
Desarrollo Institucional.	1 Proyecto de Asistencias técnicas.
	2. Proyecto de Formación de técnicos.
Desarrollo de La Infraestructura.	1. Proyecto de Reposición de Redes de
	Alcantarillado
	2. Proyecto de Ampliación de Redes
	de Alcantarillado
	3. Proyecto Operación y
	Mantenimiento del Sistema de
	tratamiento de Aguas Residuales E
	Inspección y Mantenimiento del
	Sistema de Alcantarillado
	4. Proyecto de Optimización del
	Sistema de Tratamiento de Aguas
	Residuales Barrio Colombia
	5. Proyecto de Optimización del
	Sistema de Tratamiento de Aguas
	Residuales Las Vueltas

Fuente; Elaboración Propia

4.12.3.13 CRONOGRAMA DE ACTIVIDADES

Tabla 66 Cronograma de actividades de Desarrollo Institucional y Desarrollo Infraestructural

	PROGRAMAS DE DESARROLLO INTITUCIONAL											
PROYECTO	2018	2019	2020	2021	2022	2023	2024	2025 - 2028				

Proyecto de		Х	Х	X	X	Х	Х	Х
Asistencias								
técnicas.								
Proyecto de		X	X	Х	X	Х	Х	X
Formación de								
técnicos								
PROC	RAMAS	DE DE	SARRO	LLO DE	LA INFF	RAESTRUC	TURA	
Proyecto de				Х	X			
Reposición de								
redes								
Proyecto de			Х	Х		X		
Ampliación de								
Redes de								
Alcantarillado								
Proyecto		X	Х	Х	X	X	Х	X
Operación y								
Mantenimiento								
PTAR								
Proyecto de		Х	Х	Х	Х	X	Х	Х
Optimización del								
Sistema de								
Tratamiento de								
Aguas Residuales								
Barrio Colombia								
Proyecto de		X	X	Х	X	X	Х	X
Optimización del								
Sistema de								
Tratamiento de								
Aguas Residuales								
Las Vueltas								

Fuente: Elaboración Propia

Tabla 67 cronograma de actividades y responsable.

ACTIVIDAD	AÑO	RESPONSABLE
Proyecto de Repos	ición de Re	adas
Reposición de Red Local Cámara N27- N30 = 77,83 ML	2021	La alcaldía Municipal de Tótoro
Reposición de Colector sector Banco Cámara 32 a Cámara 28 = 131,9 ML	2023	La alcaldía Municipal de Totoró
Proyecto de Amplia	ción de Re	edes
Ampliación de Red Local Cámara 41' a Cámara 41 = 140 ML Diámetro 8 Pulgadas Material NOV	2024	La alcaldía Municipal de Totoró
Ampliación de Re Local Cámara 62' a Cámara 62 = 28,4 ML Diámetro 8 Pulgadas Material NO	2025	La alcaldía Municipal de Totoró
Ampliación de Red Local Cámara 4N a Cámara 4' = 33,36 ML Diámetro 8 Pulgadas Material NOV	2027	La alcaldía Municipal de Totoró
Proyecto de Operación y Mantenimier Aguas Residuales E Inspección y I Alcantari	Mantenimie	
Control de caudal de entrada y salida	2019 - 2028	Empresa de acueducto y alcantarillado
Inspección y limpieza de la cámara de cribado	2019 - 2028	Empresa de acueducto y alcantarillado
Limpieza de la estructura de distribución	2019 - 2028	Empresa de acueducto y alcantarillado
Inspección del tanque séptico	2019 - 2028	Empresa de acueducto y alcantarillado
inspección de natas y lodos	2019 - 2028	Empresa de acueducto y alcantarillado
Extracción de natas y lodos	2019 - 2028	Empresa de acueducto y alcantarillado
Inspección del filtro anaeróbico	2019 - 2028	Empresa de acueducto y alcantarillado
Inspección de lodos en el lecho	2019 - 2028	Empresa de acueducto y alcantarillado
Mantenimiento total del tanque séptico	2019 - 2028	Empresa de acueducto y alcantarillado
Mantenimiento total del filtro anaeróbico	2019 - 2028	Empresa de acueducto y alcantarillado
Poda de material vegetal en el predio de la PTAR	2019 - 2028	Empresa de acueducto y alcantarillado
Proyecto de Optimización del Sistema d Las Vue		nto de Aguas Residuales

Estudios y Diseños	2027 - 2028	La alcaldía Municipal de Totoró
Etapa Contractual	2027 - 2028	La alcaldía Municipal de Totoró
Etapa de Construcción.	2027 - 2028	La alcaldía Municipal de Totoró
Arranque y Puesta en Operación	2027 - 2028	La alcaldía Municipal de Totoró
Seguimiento y Monitoreo	2027 - 2028	La alcaldía Municipal de Totoró

Fuente; Elaboración Propia

4.12.3.14 INDICADORES DE SEGUIMIENTO

A continuación, se establecen los indicadores respectivos de acuerdo a los programas proyectados para el cumplimiento de los proyectos propuestos en el PSMV:

✓ Indicador de Asistencias Técnicas

IAT=Talleres con directivos realizados / Talleres programados

✓ Indicador de Formación De Técnicos

IFT=Capacitaciones realizadas / capacitaciones programadas

4.12.3.15 PROGRAMA DE DESARROLLO DE LA INFRAESTRUCTURA

✓ Indicador de Reposición de Redes de alcantarillado

IRA=ML reemplazados / ML proyectados a reponer

✓ Indicador de Ampliación de redes de alcantarillado

IAA=ML ejecutados / ML proyectados

✓ Indicador de Operación y Mantenimiento del Sistema de tratamiento de Aguas Residuales

IMP=No. de actividades realizadas en las dos PTAR / No. de actividades programadas en las dos PTAR

✓ Indicador de Inspección y Mantenimiento del Sistema de Alcantarillado

IMA=No. de actividades realizadas en el alcantarillado / No. de actividades programadas en el alcantarillado

✓ Indicador de Optimización de Sistemas de tratamiento de Aguas Residuales Optimización PTAR Las Vueltas:

. IOV=Obras en PTAR Las Vueltas ejecutadas / Obras en PTAR Las Vueltas proyectadas

✓ Optimización PTAR B/Colombia:

IOB=Obras en PTAR B/Colombia ejecutadas / Obras en PTAR B /Colombia proyectadas

4.12.3.16 PRESUPUESTO

Tabla 68 Presupuesto proyectado para las actividades de desarrollo institucional y Desarrollo de Infraestructura

Programa de Desar	rollo Institucional	
Actividad	Año	Valor
Proyecto de Asistencias técnicas.	2019 – 2028	\$ 19.000.000
Proyecto de Formación de técnicos.	2019 - 2028	\$ 50.000.000
Programa de desarrollo institucional		
Programa de Desarroll	o de Infraestructura	
Proyecto Reposición de redes	2021 - 2022	\$57.000.000
Proyecto Ampliación de redes de Alcantarillado	2021	\$158.000.000
Proyecto Operación y Mantenimiento del Sistema de tratamiento de Aguas Residuales E Inspección y Mantenimiento del Sistema de Alcantarillado	2019 - 2028	\$186.000.000
Proyecto de Optimización del Sistema de Tratamiento de Aguas Residuales Barrio Colombia	2019 - 2028	\$ 120.000.000
Proyecto de Optimización del Sistema de Tratamiento de Aguas Residuales Barrio Colombia	2019 – 2028	\$ 540.000.000

5. CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES

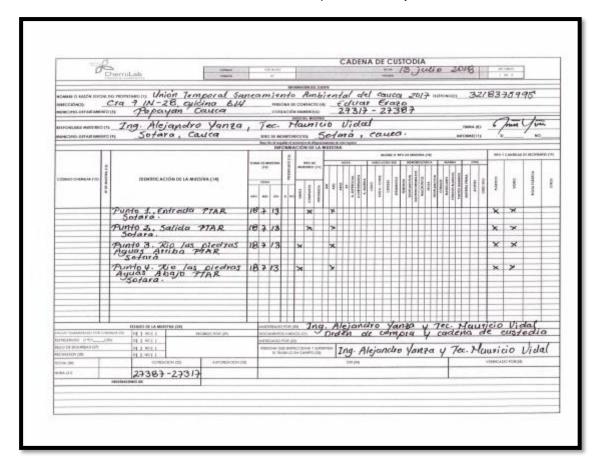
5.1. CONCLUSIONES

- De acuerdo con la revisión y consulta de la línea de base de información, se obtuvo: a) número de usuarios activos de acueducto y alcantarillado; b) porcentaje de usuarios por fuera de la cobertura del sistema de alcantarillado c) categorización de los usuarios comerciales, residenciales, institucionales, de cada municipio; d) identificación de las fuentes hídricas de descarga de aguas residuales en cada Municipio.
- A partir del análisis de los parámetros fisicoquímicos de las PTAR de Sotará y Totoró se pudo concluir: a) existencia de cargas contaminantes en cada Municipio b) ineficiencia de la PTAR de Sotará en la remoción de cargas contaminantes a pesar de los porcentajes esperados a partir de su tecnología, los cuales sin embargo son satisfactorios de acuerdo con los límites permisibles contemplados en la resolución 0631 de 2015; c) la eficiencia de remoción de la PTAR de Totoró arrojo valores negativos por lo que se recomendara tomar las medidas técnicas que permitan su optimización.
- Era necesario establecer, como en efecto se hizo: objetivos de calidad; metas de reducción de cargas contaminantes de los PSMV; y, formular programas y proyectos necesarios para la sostenibilidad y cumplimiento de los objetivos planteados en esta pasantía.

5.2. RECOMENDACIONES

 Iniciar y mantener la implementación y cumplimiento de los programas y proyectos diseñados durante la pasantía, para que los cambios sean significativos en el mediano y largo plazo.

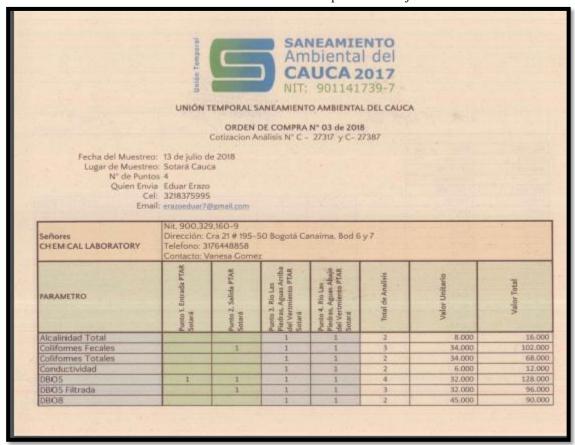
- Gestionar los recursos necesarios para ejecutar los proyectos de optimización de redes de alcantarillado y sistema de tratamiento de aguas residuales, apoyándose en la nación, el departamento, o el Plan Departamental de Aguas.
- Fortalecer a las empresas prestadoras del servicio de acueducto y
 alcantarillado de los municipios de Sotará y Totoró en sus aspectos técnico
 y administrativos, con el fin de garantizar la sostenibilidad de los sistemas y
 contar con datos actualizados de usuarios, por cada punto de vertimiento
 identificado y áreas de drenaje representativas de los sistemas de
 alcantarillado existentes, que permitan adecuados estudios y diseños en
 proyectos de saneamiento básico municipal.


BIBLIOGRAFÍA

- [1] Ministerio de Ambiente, Vivienda y Desarrollo Territorial, «Resolución 1433 de 2004», 2004. [En línea]. Disponible en: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=15603. [Accedido: 22-mar-2019].
- [2] Ministerio de Ambiente y Desarrollo Sostenible, «Resolución 631 de 2015 Parámetros vertimientos Red de Desarrollo Sostenible de Colombia», 2015. [En línea]. Disponible en: https://www.rds.org.co/es/recursos/resolucion-631-de-2015-parametros-vertimientos. [Accedido: 22-mar-2019].
- [3] Congreso de la República, «Constitución Política de Colombia». 1991.
- [4] Congreso de la República, «Decreto 3100 de 2003 Nivel Nacional», 2003. [En línea]. Disponible en: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=15073. [Accedido: 22-mar-2019].
- [5] «piga_de_la_gobernacion_del_cauca_completo_1.pdf». .
- [6] «Nueva Resolución 0330 de 2017 Reglamento Técnico RAS», *ACODAL*, 14-jun-2017. .
- [7] Ministerio de Ambiente y Desarrollo Sostenible, «Gestión Integral del Recurso Hídrico |», 2008. [En línea]. Disponible en: http://www.minambiente.gov.co/index.php/gestion-integral-del-recurso-hidrico. [Accedido: 22-mar-2019].
- [8] C. Z. Rodríguez, «GOBERNABILIDAD SOBRE EL RECURSO HÍDRICO EN COLOMBIA: ENTRE AVANCES Y RETOS», Gestión y Ambiente, vol. 15, n.º 3, pp. 99-112, sep. 2012.
- [9] J. A. G. Castro y L. I. P. Rodríguez, «ANÁLISIS DEL ENFOQUE DEL PLAN DE SANEAMIENTO Y MANEJO DE VERTIMIENTOS 2007 – 2015 DE BOGOTÁ D.C. ESTRATEGIAS PARA SU FORTALECIMIENTO», p. 78, 2007.
- [10] Departamento Nacional de Planeación, «Documento Conpes 3177 Consejo Nacional de Política Económica y Social». 2002.
- [11] Congreso de la República, «Decreto 2667 de 2012 Nivel Nacional», 2012. [En línea]. Disponible en: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=51042. [Accedido: 22-mar-2019].
- [12] Ministerio de Ambiente y Desarrollo Sostenible, «GUÍA METODOLÓGICA PARA EL DISEÑO Y LA IMPLEMENTACIÓN DE PROCESOS DE PREVENCIÓN Y TRANSFORMACIÓN DE CONFLICTOS POR EL AGUA», p. 97, 2017.
- [13] Congreso de la República, «Decreto. 2811 de 1974», 1974. [En línea]. Disponible en: http://www.secretariasenado.gov.co/senado/basedoc/decreto_2811_1974.htm l. [Accedido: 22-mar-2019].
- [14] J. J. Ordoñez Galvez, «¿Qué es una cuenca Hidrografica?» 2012.
- [15] «La calidad del agua y el saneamiento».

- [16] V. Alcaldía de los córdobas, «PLAN DE SANEMAIENTO Y MANEJO DE VERTIMIENTOS- PSMV DEL MUNICIPIO DE LOS CORDOBAS-CORDOBA», PSMV, 2017.
- [17] Víctor Hugo Rivera Vidal, «PLAN DE SANEAMIENTO Y MANEJO DE VERTIMIENTOS PSMV
- MUNICIPIO DE SOTARÁ», p. 38, 2007.
- [18] Ministerio del Medio Ambiente, «Ley 99 de 1993», 1993. [En línea]. Disponible en: http://www.secretariasenado.gov.co/senado/basedoc/ley_0099_1993.html. [Accedido: 22-mar-2019].
- [19] Congreso de la República, «Ley 142 de 1994», 1994. [En línea]. Disponible en: http://www.secretariasenado.gov.co/senado/basedoc/ley_0142_1994.html. [Accedido: 22-mar-2019].
- [20] Congreso de la República, «Ley 373 de 1997. Programa de uso eficiente y ahorro de agua. - empresas públicas municipales de quinchía», 1997. [En línea]. Disponible en: http://www.epm-quinchiarisaralda.gov.co/normatividad/ley-373-de-1997-programa-de-uso-eficiente-yahorro-de. [Accedido: 22-mar-2019].
- [21] Congreso de la República, «Ley 689 de 2001», 2001. [En línea]. Disponible en: http://www.secretariasenado.gov.co/senado/basedoc/ley_0689_2001.html. [Accedido: 22-mar-2019].
- [22] Congreso de la República, «Decreto 3440 de 2004», 2004. [En línea]. Disponible en: https://diario-oficial.vlex.com.co/vid/decreto-352556546. [Accedido: 22-mar-2019].
- [23] Ministerio de Ambiente, Vivienda y Desarrollo Territorial, «Decreto 4728 de 2010», *vLex*, 2010. [En línea]. Disponible en: https://diario-oficial.vlex.com.co/vid/decreto-353753278. [Accedido: 22-mar-2019].

ANEXOS


Anexo 1. Orden de compra Sotará hoja 1

CADENA DE CUSTODIA

Anexo 2. Orden de compra Sotará hoja 2

Anexo 3. Orden de compra Sotará hoja 3

Anexo 4. Orden de compra Sotará hoja 4

osforo Total irasas y Aceites		1					
			1	1	3	20.000	60,000
	1	1	1	1	4	60.000	240.000
lidrocarburos		1			1	65.000	65,000
litratos		1	1	1	3	15.000	45.000
litritos		1	1	1	3	15.000	45.000
litrogeno Amoniacal		3	1	1	3	15.000	45,000
litrogeno Total		1	1	1	3	35.000	105.000
Irtofosfatos		1	1	1	3	15.000	45.000
xigeno Disuelto		1	1	1	3	6.000	18.000
H	1	1	1	1	A	3.000	12.000
olidos Sedimentables	1	1			2	5,000	10.000
olidos Suspendidos Totales	1:	1	1	- 1	-4	18,000	72.000
olidos Suspendidos Volatiles		1	1	1	3	3.000	9.000
olidos Totales			1	- 1	2	18.000	36.000
						Subtotal 1	1.675.000
						Descuento	
						Subtotal 2	1.675.000
						IVA 19%	318.250
						TOTAL	1.993.250
labororo Daul. Ap							
sabororo Ap	robó	11 1	The same of the sa	Fecha de en			
VXIIIV.	14	DE A. VIII2 centere Ambier halista ing. Sar y 192381565740 el. 316 60346 peyanza@gmail	a N.		13 jul	10 de 2018	
7	107 - Fin						

Anexo 5. Orden de compra Totoró

	R	_														CA	\DI	EN.	AD	EC	CUS	STC	DI	Α										
1	_ C	hemi	Lab			CÓDIGO VERSIÓN		F	OR 04 0	10	-		POSSESSION AND ADDRESS OF THE PARTY OF THE P			Matery.	e de la constante de la consta	Nei		PÁGI	-		elist	57975	5.56	100		(hwy	PAGE A	1		17-08-03		
		nervice at the	- Couracory															- Harris		PAGI	AA		Enderson.	2/1072		100	25	Heed III	9130115		1.	DE 2		
NOMBRE O RAZÓN SOC DIRECCIÓN(3): MUNICIPIO-DEPARTAMI	ENTO	DEL PROPII	7 1 Pos	N-2	Union	n tempor icina 614 wca	al	5	PER CO	SONA	DE C	CONT	TACTO	(4):	cle	E	ce	an	100	É	20	17		_	TELI	ÉFON	O(2 <u>):</u>		3	21	83	75	995	
RESPONSABLE MUESTRE	0 (7)	Ju	ng.	Ale	jandi	o Yanza					DATO	OS DEL	L MUESTI	REO		,	- *				,							FIR	MA (8	8):	0	Juin	- Jun	-
MUNICIPIO-DEPARIAME	OIN	(9):	101	010,	aure	·				MONITO			de diliger	1/4	n_{ℓ}		011)	10	101	0	, <	a	uc	0		1	NFOR	ME(1	1):	- sı		_ NC	
			-				_		IN	FORM	AC	IÓN	DELA	MUE	STRA	A .	gistre			-										_				
								A DE M		(16)				\perp								ODEA									TIPO Y	CANTIDA	D DE RECIPIE	NTES (19)
CÓDIGO CHEMILAB (12)	MUESTRA (13)		IDE	NTIFICACIO	ÓN DE LA MU	ESTRA (14)	ION	(15)		PRESERVADO (L	MUEST	PO DE TREO (17)			AGUA	CIAL	NA	2100	-LODO-	SED	HID NOL	BRADOS	SO	NOL	MA SE	NDOS NDOS	IMA	OTRA		0		STICA	
	N° DE		ento 1. Entrada PTAR artio Colombia.					MES	DIA	51 N	0	SIMPLE	COMPUESTO	ARI	ARD	AP	A. SUBTERRA	A. MARII	Ogo1	CENIZAS	SEDIMENT	TOOPLANC	MACROINVERTE	MACROFII	FITOPLANC	MANGLAR	FONDOS BLA	MATERIA PRI	ACEITES	OTRO TIP	PLÁSTICO	VIDRIO	BOLSA PLÁSTICA	OTRO
							18	7	tf		ŧ		*	7	*												+			\exists	×	×		
						PTAR	-	7			Ė		×	1	per .																*	×		
						ibo PTAR.					7	5		2	>											H	-			\mp	×			
						ajo PTAR					7	٩.		7	e						-		+			H	-			7	×			
						Lus Vueltas Las Vueltas						3	4		K			+												#	×	×		
						by PTAR					×	+		>	6			-			+									#	×			
	1			E LA MUESTA		1)0 PIAR	18	7	11		×			>			\coprod					\Box			-					\mp	X			
IVASE SUMINISTRADO POR C	CHEM		SIE I NO			ECIBIDO POR (29)	_			D POR (_	(01)	In	g.	A	le	all	na	20	_	Ya	ni	a											
FRIGERADO (T °C= LLO DE SEGURIDAD (27)	_) (26))	SI[] NO	1 1		10.7		ENTRE	GADO DNA Q	POR (2 UE INSP	2) ECC	IONA	A Y SUPE	ERVISA	T			0 .			,	_	1				_	No.		-1				
CHAZADA (28) CHA (30)			SI[] NO	COTIZACIO	ON (32)	AUTORIZACION (33)	_		ELTR	ABAJO	ENC	CAMP	O (23)		1	_	100000	41	ejo	me	110	,	(a)	ne	a	, 7	ne	9	Ke	114	10	rdo	nez	
PRA (31)			273		27387											OS	(34)	111				1		94		+				VEF	RIFICADO	D POR(35)		
	7	OBSERVACIO	NES (36)	-																														

Paispamba Sotarit, 22 de junio 2018

ACTA DE REUNION 001 SOTARA CAUCA

Asistentes:

- choldlement bod de Souril
- Polige Andres Vience, R.I. Unita Temperal.
 Ober Aksjandro Yaros. Ing. Ambiental Especialists.
 June: Martinez Secretoria de plasmación
 Mailes Amorio Cauji. Operario APC Saturil

El día 22 de junio de 2018 se resigna la reumón inicial de socialización del proyecto del PSMV del municipio de Sotará y se solicita información de estado del saneamiento bésico de alcantarillado e información necesario para residue la tormulación del PSMV.

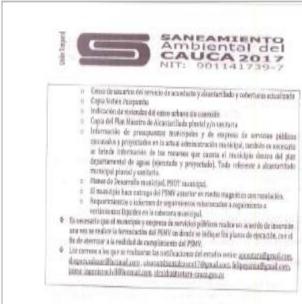
Situación Encontrada:

- 6 APE PEÑAS BLANCAS de Sotará est 900358999 6 hace entrega de los signientes docum
 - Investario de infraestructura, chequeso bidelalismo y accesso térmicas del 2015 resileado per ENCASERVICIO E de despois un medie magastico.

 Proceso tecnico aparetivo sistema de alcantarillada de Sotaria.

 Timos Planas del 294V 2107 antartar en medio bisco con disposición para copia. Se toras formación del alcantarillada del social.
- tiona Scognafa del piace.

 El la violta y el recentida técnicos de los contravastins de Sotara es standida por el settor Moisse. Antonio Cault.
- Resourcion, El plan maneres de discriminado fue malizado en el año 1015 por 104.3528/11008, por el tuda y el herr recoració solicitar capia en medio magnésico del misera. En communició titelávico con el comeltor del Plan Manero de Alcanac Bado se comprometió a dar la ministra de la información planos y momentes.
- La secretaria de planesción hace una espiración de la situación ambiental de los vertinients. ◆ La serrecata de plansenión hace one enginerrian de la atracción ambiectal de los vertiroleuros de montrajos. Converta que los problemas más graves de vertiroleuros en cucurrian en la serie rarol. por tento es apenes lógico que a fatare ol relucroo presupocidal de la abientalmentos en concertos en dar relacida a las vertiroleuros de Casos Nucrea, Sudancoo. Nucrea Dopareira, Chapa, El Carman, els. La rabienter tiene problema asociados non la vertiroleuro de casos Nucrea, Sudancoo. Nucrea Dopareira, Chapa, El Carman, els. La rabiente tiene problema asociados non la vertiroleuro de anexer completidad en parte por la inventión recervente que ha hecho la administração y en agrico por el tienatio del poligos numbras.
 ◆ El mandicipio hace entrega de la reaccionio de PSMV.
 ◆ El mandicipio hace entrega places de redes plavados y manueiras.
 ◆ El mandicipio hace Dopor ducumentos legades pocesión alcaldila, BUT y cedula del abaldo.


Observaciones y compromisos:

- Devetre de la decomentación legal delássica se requiere:
 Cámara Carrerra, APC Sogará
 Capia de la redeia del Generio APC Sotará

 - Certificado de tradición de los gredios de las PTAR
 Associación de propietario del precise sobre la APC Solará pera su operación de la PTAR.
 Girecepto seo de suelos de las PTAR que lediquem uno para eléccición de los sistemas de
- Demodela informolis técnicos repore.

Officina: # 614 Carrera 7 # 1N-28 Edificia Edgar Negret Popsylor-Colombia
 www.conomb.com Celular: 116604646 Email: conamb-consultoria@msn.com

Firmen los presentira.

MOISES ANTONIO COAJI CC4771314

Operario empresa de acueducto y log Ambiental Esp. Unión Temporal alcantacillado de Setará Sapelmiento del Cauca 2017

OSCAR A YANZA NARVÁEZ cc 1061743142

Sanesmiento del Cauca 2017

FEMPE A YANZAN

or 1039/685

R.L. Union Temporal Saneamiento
Ambiental del Cauca 2017

JULIANA ORDONEZ £c 1061795603

Shood

Tecnéloga Ambiental Unión Temperal Sancamiento del Cauca 2017.

uner linear JAIME ALBERTO MARTINEZ CC 10.306.960

SECRETARIA DE PLANEACIÓN ALCALDIA MUNICIPAL DE SOTARÁ

Officina: #814 Correra 7 # 1N-28 Edificio Edgar Negrat Proxyler-Colombia 2
 www.conamb.com Celufor: 3166(34646 Email: conamb-consulforis@mso.com

Totoró, 20 de junio 2018

ACTA DE REUNION 1 TOTORO CAUCA

Asistentes:

- Oscar Alejandro Yanza . Ing. Ambiental Especialista.
- Felipe Andrés Yanza. R.L. Unión Temporal.
 Juliana Ordoñez. Tecnologa Ambiental Unión Temporal
 - José Anuar. Ingeniero Alcaldia Municipal Totoró
 - Gioria Elcira labio Quintero. Gerente Administración publica cooperativa de Acueducto y Alcantarillado de Yotoró

El día 20 de junio de 2018 se realiza la reunión inicial de socialización del proyecto del PSMV del município de Totoró y se solicita información de estado del saneamiento básico de alcantanitado e información necesario para realizar la formulación del PSMV.

Situación Encontrada:

- Se solicita los suscriptores de acueducto y alcantarillado, por el cual la emprasa de servicios públicos hace entrega del listado a fecha de mayo de 2018.
 La empresa de servicios públicos maneja recurso por el sistema tanifario por el cual hacen
- entrega de dicha información.
- La operación de la ptar se encarga la APC.
- Pago de tasas retributiva las realiza el municipio.
 La cobertura de alcanterillado es del 95% sobre la cabecera municipal. Todas las viviendas urbanas descargan sobre las ptar.
- Los monitoreos anueles son realizados por el ingeniero José Trochez de la alcaldía Municipal

 B PSMV esta vigente hasta agosto de 2017, se solicita soporte de la resolución que se será

- entregada al respectivo correo.

 Se cuenta con dos ptar, la del barrio Colombía y la del sector las vueitas. PTAR Colombía 30%.
 PTAR las vueitas 70%. Cubre la totalidad de viviendas y no existen vertimientos.

 En 2012 se hizo el plan maestro de alcantarillado por EMCASERVICIOS, se solicitara al municipio de EMCASERVICIOS los respectivos soportes.

 Respecto a las metas de calidad CRC solicita una alta exigencia por el cual se ve la necesidad de que en el PSMV se plantee corrección a dicha exigencia.

 Los puntos de muestreo serán cuatro (4) para ptar y (4) para fuente receptoeu.

 Alcaldía se compromote a hacer entrega del PSMV y los informes de seguimiento.

 Del PSMV actual no cumple con permisos de vertimientos pero se tiene toda la documentación legal para iniciar el trámite. El municipio hará entrega de todos lo requisitos legales para iniciar un solo proceso.

Observaciones y compromisos:

- Dentro de la documentación legal se requiere:

 Descripción de la alcaldía municipal

 - Rot alcaldia municipal
 Gedula alcalde municipal
 - Gertificado de tradición de los predios de las PTAR
 - Concepto uan de suelos de las PTAR que indiquen uso para ubicación de los sistemus.

de tratamiento.

- ◆ Dentro de la información técnica se requiere:
 - Diseños hidráulicos de las ptar con planos planta y perfiles debidamente firmados por el profesional.
 - Plan maestro de alcantarillado que incluya memorias técnicas de los diseños hidráulicos del sistema de alcantarillados sanitario y/o pluvial; con sus respectivos planos debidamente firmados por los profesionales idóneco.
 - Îndormación de presupuestos municipales y de empresa de servicios públicos
 ejecutados y proyectados en la actual administración municipal, también es necesario
 se brinde información de los recursos que cuenta el municipio dentro del plan
 departamental de aguas (ejecutado y proyectado). Todo referente a alcantarillado
 municipal pluvial y sanitario.
 - Planes de Desacrollo municipal, PBOT municipal y PSMV anteriores formulados.
 - Requerimientos o informes de seguimientos relacionados a seguimiento a vertimientos líquidos en la cabecera municipal.
- Es necesario que el municipio y empresa de servicios públicos realice un acuerdo de inversión una vez se realice la formulación del PSMV en donde se indique los plazos de ejecución, con al fin de aterrizar a la realidad de cumplimiento del PSMV.
- Los correos a los que se realizaran las notificaciones del estudio serám apctoturo@hotmail.com., insechek@hotmail.com. secdesarrolloproductivo@totorucauca.gov.co. utsanambientalcauca17@gmail.com. felipeyanza@gmail.com.

Firman los presentes:

JOSE ANUAR TROCHEZ

c.c 10.290.646

Contratista Ambiental Alcaldía Municipal de Totoró

FEMPE A YANZA N

KL Unión Temporal Saneamiento Ambiental del Cauca 2017 OSCAR A YANZA NARVÁEZ C.E. 1061743142

Ing. Ambiental Esp. Unión Temporal Saneamiento del Cauca 2017

MILIANA ORDONEZ

Tecnóloga Ambiental Unión Temporal Saneamiento del Cauca 2017.

GLORIA ELCIRA FLABIO QUINTERO

c.c 66914211

Gerente Empresa de Acueducto y Alcantarillado

Nit: Dirección: Solicitado por: Telefono: Celular: E-mail:

sil: erazoeduar7@gmail.com en de Servicio: 25408

UNION TEMPORAL SANEAMIENTO AMBIENTAL DEL Fecha Recepción: Porta 141739-7
CARRERA 7 1 N 28 ED EDGAR NEGRET OF 614
EDUAR ERAZO 3218375995
Fecha de Muestreo: Muestreo: Plan de m Fecha Recepción:
Fecha de Emisión de Resulta
Fecha de Muestreo:
Muestreo a Cargo de:
Plan de muestreo:
Procedimiento de muestreo:
Número total de muestras:
Lugar de Muestreo:
Tipo de muestras:
Tipo de muestra: 2018-07-31 2018-07-11

2018-07-11
CLIENTE
No Reporta
No Reporta
2
MUNICIPIO TOTORO, CAUCA
Puntual
ARI() ARD(X) ARnD() AN()
AP() AM() S() AX()

			Reporte de Re	sultados				
Item	Fecha de Análisis (AAAA-MM-DD)	Parámetro	Método	Técnica	Limite de Cuantificación del método	Unidad	PUNTO 3 AGUAS ARRIBA PTAR BARRIO COLOMBIA	PUNTO 4 AGUAS ABAJO PTA BARRIO COLOMBIA
							MD83690	MD83691
1	2018-07-17	Alcalinidad total*	SM 2320 B	Volumetria	6,040	mg CaCO3/L	19,7	21,7
2	2018-07-13	Coliformes Fecales Termotolerantes*	SM 9223 B modificado	Sustrato enzimático multicelda	1	NMP/100mL	14600	100
3	2018-07-13	Coliformes Totales*	SM 9223 B	Sustrato Enzimático Multicelda	1,0	NMP/100mL	29500	12100
4	2018-07-13	Conductividad*	SM 2510B	Electrometria	0,1	μS/cm	76,5	71,8
5	2018-07-24	DBO 12	SM 5210 B, ASTM D 888-12 METODO C	Luminiscenda	5,00	mg G2/L	<5,00	<5,00
6	2018-07-20	DBO 8	SM 5210 B, ASTM D 888-12 METODO C	Luminiscenda	5,00	mg O2/L	<5,00	<5,00
7	2018-07-17	DBO5 (Demanda Bioquímica de Oxígeno) *	SM 5210 B, ASTM D 888-09 METODO C	Incubación 5 días y Luminiscencia	5,0	mg O2/L	<5,0	<5,0
8	2018-07-17	DBO5 Disuelta (Demanda Bioquímica de Oxigeno Disuelto)	Filtracion - SM5210 B, ASTMO 888-09 Metodo C	Filtracion - Incubacion 5 dias Luminiscencia	5,0	mg O2/L	<5,0	<5,0
9	2018-07-26	DQO Disuelta	Filtracion de la muestra y SM 5220D	Filtracion, Reflujo Cerrado y Colorimetria	5,00	mg G2/L	<5,00	7,89
10	2018-07-25	DQO*	SM 5220D	Reflujo cerrado y Colorimétrico	5,00	mg G2/L	<5,00	11,0
11	2018-07-23	Dureza Total*	SM 2340C	Volumétrico con EDTA	5,00	mg CaCO3/L	15,9	17,1
12	2018-07-18	Fósforo total*	SM 4500 -P B,E	Digestion Colorimetria con Acido Ascorbico	0,07	mg P/L	<0,07	0,076
13	2018-07-26	Grasas y Aceites*	NTC 3362:2005-06-29, Numeral 4, Método C	Espectrofotometria Infrarrojo	0,2	mg/L	<0,2	0,293
14	2018-07-13	Nitratos* (Aguas Residuales alta MO)	SM 4500 NO3 D	Electrometria	1,00	mg NO3/L	<1,00	<1,00
15	2018-07-13	Nitritos*	SM 4500 NO2 B	Colorimétria	0,02	mg NO2/L	<0,02	<0,02
16	2018-07-26	Nitrógeno amoniacal (Amonio)*	SM 4500 NH3-B, Asian Journal of Applied Sciences 2009.2, (4):363-371	Colorimétria	0,054	mg/L NH3-N	<0,054	0,420
17	2018-07-24	Nitrógeno total Kjeldahl*	Semi-micro Kjeldahl SM 4500-Norg C, SM 4500 NH3 B,C	Digestión - kjeldhal	3,00	mg N/L	<3,00	6,16
18	2018-07-13	Ortofosfatos* (mg PO4/L) (equivalente a fósforo soluble, fosfato soluble, ortofosfato soluble, fósforo reactivo soluble)	SM 4500-P-E	Colorimétria	0,21	mg PO4/L	<0,21	<0,21
19	2018-07-13	Oxigeno disuelto*	ASTMD 888-09 METODO C	Luminiscencia	0,1	mg G2/L	7,33	7,89
20	2018-07-13	pH *	SM 4500 H*B	Electrometria	N.A	Unidades de pH	6,79	7,39
21	2018-07-19	Solidos Suspendidos Totales*	SM 2540D	Gravimetria Secado 103-105°C	10,0	mg/L	11,5	14,5
22	2018-07-19	Solidos Suspendidos Volatiles*	SM2540E	Gravimetría, Ignición a 550°C	10,0	mg/L	11,0	11,5
23	2018-07-19	Solidos totales*	SM 25408	Gravimetria Secado 103-105°C	10,0	mg/L	74.0	82.0

Chservaciones: Métados de Análisis aplicados según el Laboratorio de Suelos IGAC y US-EPA (aplica para suelos) odos de Análisis aplicados según Standard Methods for the Examination of Water and Wastewater (aplica para aguas) Resultados validos únicamente para la(s) muestras analizados.

Prohibida la reproducción total o grácula de 479: (Ingreme, sir publicación previa de Chemilab S.A.S

EDWIN ROLANDO VALENCIA ANGULO Coordinador de Reportes

UNION TEMPORAL SANEAMIENTO AMBIENTAL DEL Fecha Recepción: CAUCA 2017

Nit

901141739-7 CARRERA 7 1 N 28 ED EDGAR NEGRET OF 614 Dirección:

Solicitado por: Telefono: EDUAR ERAZO 3218375995

Celular:

Empresa:

E-mail: erazoeduar7@gmail.com Orden de Servicio: 25408

2018-07-12

Fecha de Emisión de Resultados: 2018-07-31 Fecha de Muestreo: Muestreo a Cargo de: Plan de muestreo: Procedimiento de muestreo: CLIENTE No Reporta No Reporta

Número total de muestras:

Lugar de Muestreo:

MUNICIPIO TOTORO, CAUCA Puntual

Tipo de muestreo: Tipo de Muestra: ARI() ARD(X) ARnD() AN() AM() S() AP() AX()

OBSERVACIONES ANALITICAS

Observaciones: Métodos de Análisis aplicados según el Laboratorio de Suelos IGAC y US-EPA (aplica para suelos)
Métodos de Análisis aplicados según Standard Methods for the Examination of Water and Wisdowseller (aplica para aques)
Resultados validos únicamente para la(s) muestras analizadas.
Prohibida la reproducción total o parcial de este informe sin autorización previa de Chemilab S.A.S

EDWIN ROLANDO VALENCIA ANGULO

Coordinador de Reportes PQ-5276

" FIN DE ESTE REPORTE "

UNION TEMPORAL SANEAMIENTO AMBIENTAL DEL Fecha Recepción:
CAUCA 2017
901141739-7
CARRERA 7 1 N 28 ED EDGAR NEGRET OF 614
EDUAR ERAZO
3218375995
Fecha de Emisión
Fecha de Muestreo
Muestreo a Cargo
Plan de muestreo:

ail: erazoeduar7@gmail.com en de Servicio: 25408

Fecha Recepción:
Fecha de Emisión de Resultad
Fecha de Muestreo:
Muestreo a Cargo de:
Plan de muestreo:
Procedimiento de muestreo:
Número total de muestras:
Lugar de Muestreo:
Tipo de muestra:
Tipo de Muestra:

2018-07-12

2018-07-12

305: 2018-07-31
2018-07-11
CLIENTE
No Reporta
No Reporta
2
MUNICIPIO TOTORO, CAUCA
Compuesta
ARI() ARD(X) ARND() AN()
AP() AM() S() AX()

			Reporte de Re	sultados				
Item	Fecha de Análisis (AAAA-MM-DD)	Parámetro	Método	Técnica	Limite de Cuantificación del método	Unidad	ENTRADA PTAR LAS VUELTAS HD83692	PUNTO 6 SALIDA PTAR LAS VUELTAS MDB3693
1	2018-07-13	Coliformes Fecales Termotolerantes*	SM 9223 B modificado	Sustrato enzimático multicelda	1	NMP/100mL		1986300
2	2018-07-17	DB05 (Demanda Bioquímica de Oxígeno) *	SM 5210 B, ASTM D 888-09 METODO C	Incubación 5 días y Luminiscencia	5,0	mg O2/L	434	362
3	2018-07-17	DBOS Disuelta (Demanda Bioquimica de Oxigeno Disuelto)	Filtracion - SM5210 B, ASTMO 888-09 Metodo C	Filtracion - Incubacion 5 dias Luminiscencia	5,0	mg G2/L	-	170
4	2018-07-13	Detergentes - Tensoactivos (SAAM)*	SM 5540C	Extracción liquido-liquido, Colorimetría	0,5	mg SAAM /L como LAS de peso molecular 288.38 g/mol		5,85
5	2018-07-26	DQO Disuelta	Filtracion de la muestra y SM 5220D	Filtracion, Reflujo Cerrado y Colorimetria	5,00	mg O2/L	-	300,36
6	2018-07-25	DQO*	SM 5220D	Reflujo cerrado y Colorimétrico	5,00	mg O2/L	679	543
7	2018-07-23	Dureza Total*	SM 2340C	Volumétrico con EDTA	5,00	mg CaCO3/L		50,1
8	2018-07-18	Fósforo total*	SM 4500 -P B,E	Digestion Colorimetria con Acido Ascorbico	0,07	mg P/L	-	4,16
9	2018-07-24	Grasas y Aceites*	NTC 3362:2005-06-29, Numeral 4, Método C	Espectrofotometría Infrarrojo	0,2	mg/L	19,1	17,1
10	2018-07-24	Hidrocarburos totales (TPH)*	NTC 3362:2005-06-29 Numeral 4, Método C y numeral 7. Método F	Espectrofotometría Infrarrojo	0,2	mg/L	-	3,82
11	2018-07-13	Nitratos* (Aguas Residuales alta MO)	SM 4500 NO3 D	Electrometria	1,00	mg NO3/L		2,65
12	2018-07-13	Nitritos*	SM 4500 NO2 B	Colorimétria	0,02	mg NO2/L	-	<0,02
13	2018-07-26	Nitrógeno amoniacal (Amonio)*	SM 4500 NH3-B, Asian Journal of Applied Sciences 2009.2, (4):363-371	Colorimétria	0,054	mg/L NH3-N		21,0
14	2018-07-24	Nitrógeno total Kjeldahl*	Semi-micro Kjeldahl SM 4500-Norg C, SM 4500 NH3 B,C	Digestión - kjeldhal	3,00	mg N/L	-	51,5
15	2018-07-13	Ortofosfatos* (mg PO4/L) (equivalente a fósforo soluble, fosfato soluble, ortofosfato soluble, fósforo reactivo soluble)	SM 4500-P-E	Colorimétria	0,21	mg PO4/L		3,59
16	2018-07-13	Oxigeno disuelto*	ASTMD 888-09 METODO C	Luminiscencia	0,1	mg O2/L	-	1,09
17	2018-07-13	pH *	SM 4500 H*B	Electrometria	N.A	Unidades de pH	6,51	6,96
18	2018-07-13	Solidos sedimentables*	SM 2540F	Cono Imhoff	0,1	ml/L	4,00	2,00
19	2018-07-19	Solidos Suspendidos Totales*	SM 2540D	Gravimetria Secado 103-105°C	10,0	mg/L	216	167
20	2018-07-19	Solidos Suspendidos Volatiles*	SM2540E	Gravimetría, Ignición a 550°C	10,0	mg/L	-	113

Observaciones: Métados de Análisis aplicados según el Laboratorio de Suelos IGAC y US-EPA (aplica para suelos)
Métados de Análisis aplicados según Standard Methods for the Examination of Water and Wastewater (aplica para aguas)
Resultados validos iniciamente para la(s) muestras analisadas.

Prohibida la reproducción total o garcial de 47% informs sin autélización previa de Chemilab S.A.S

EDWIN ROLANDO VALENCIA ANGULO Coordinador de Reportes PQ-5276

UNION TEMPORAL SANEAMIENTO AMBIENTAL DEL Fecha Recepción:

CAUCA 2017 901141739-7 CARRERA 7 1 N 28 ED EDGAR NEGRET OF 614 Nit: Dirección:

Solicitado por: EDUAR ERAZO Telefono: 3218375995

Celular:

Empresa:

E-mail: erazoeduar7@gmail.com

Orden de Servicio: 25408

2018-07-12

Fecha de Emisión de Resultados: 2018-07-31 Fecha de Muestreo: 2018-07-11 Muestreo a Cargo de: CLIENTE Plan de muestreo: Procedimiento de muestreo: No Reporta No Reporta

Número total de muestras:

Lugar de Muestreo: MUNICIPIO TOTORO, CAUCA

Tipo de muestreo: Tipo de Muestra:

Compuesta
ARI() ARD(X) ARnD() AN()
AP() AM() S() AX()

OBSERVACIONES ANALITICAS

Observaciones: Métodos de Análisis aplicados según el Laboratorio de Suelos IGAC y US-EPA (aplica para suelos)
Métodos de Análisis aplicados según Standard Methods for the Examination of Water and Wastewater (aplica para aguas)
Resultados validos únicamente para la(s) muestras analizadas.
Prohibida la reproducción total o parcial de este informe sin autorización previa de Chemilab S.A.S

EDUNG. VALEVICTA A EDWIN ROLANDO VALENCIA ANGULO Coordinador de Reportes

PQ-5276

** FIN DE ESTE REPORTE **